def assemble_vector(form: ufl.form.Form, constraint: MultiPointConstraint, b: _PETSc.Vec = None) -> _PETSc.Vec: """ Assemble a linear form into vector b with corresponding multi point constraint Parameters ---------- form The linear form constraint The multi point constraint b PETSc vector to assemble into (optional) Returns ------- PETSc.Vec The assembled linear form """ if b is None: b = _cpp.la.petsc.create_vector( constraint.function_space.dofmap.index_map, constraint.function_space.dofmap.index_map_bs) t = Timer("~MPC: Assemble vector (C++)") with b.localForm() as b_local: b_local.set(0.0) dolfinx_mpc.cpp.mpc.assemble_vector(b_local, form, constraint._cpp_object) t.stop() return b
def apply_lifting(b: _PETSc.Vec, form: List[_fem.FormMetaClass], bcs: List[List[_fem.DirichletBCMetaClass]], constraint: MultiPointConstraint, x0: List[_PETSc.Vec] = [], scale: float = 1.0): """ Apply lifting to vector b, i.e. .. math:: b <- b - scale * K^T (A_j (g_j - x0_j)) Parameters ---------- b PETSc vector to assemble into form The linear form bcs List of Dirichlet boundary conditions constraint The multi point constraint x0 List of vectors scale Scaling for lifting Returns ------- PETSc.Vec The assembled linear form """ t = Timer("~MPC: Apply lifting (C++)") with contextlib.ExitStack() as stack: x0 = [stack.enter_context(x.localForm()) for x in x0] x0_r = [x.array_r for x in x0] b_local = stack.enter_context(b.localForm()) dolfinx_mpc.cpp.mpc.apply_lifting(b_local.array_w, form, bcs, x0_r, scale, constraint._cpp_object) t.stop()
def test_slave_on_same_cell(master_point, degree, celltype, get_assemblers): # noqa: F811 assemble_matrix, _ = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 1, 8, celltype) V = fem.FunctionSpace(mesh, ("Lagrange", degree)) # Build master slave map s_m_c = { np.array([1, 0], dtype=np.float64).tobytes(): { np.array([0, 1], dtype=np.float64).tobytes(): 0.43, np.array([1, 1], dtype=np.float64).tobytes(): 0.11 }, np.array([0, 0], dtype=np.float64).tobytes(): { np.array(master_point, dtype=np.float64).tobytes(): 0.69 } } with Timer("~TEST: MPC INIT"): mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() # Test against generated code and general assembler u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx bilinear_form = fem.form(a) with Timer("~TEST: Assemble matrix"): A_mpc = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Compare with numpy"): # Create globally reduced system A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc) list_timings(mesh.comm, [TimingType.wall])
def test_mpc_assembly(master_point, degree, celltype, get_assemblers): # noqa: F811 assemble_matrix, _ = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 5, 3, celltype) V = fem.FunctionSpace(mesh, ("Lagrange", degree)) # Test against generated code and general assembler u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx bilinear_form = fem.form(a) def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() with Timer("~TEST: Assemble matrix"): A_mpc = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Compare with numpy"): # Create globally reduced system A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc)
def test_mpc_assembly(master_point, degree, celltype, get_assemblers): # noqa: F811 _, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 3, 5, celltype) V = fem.FunctionSpace(mesh, ("Lagrange", degree)) # Generate reference vector v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) rhs = ufl.inner(f, v) * ufl.dx linear_form = fem.form(rhs) def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Reduce system with global matrix K after assembly L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) list_timings(comm, [TimingType.wall])
def test_lifting(get_assemblers): # noqa: F811 """ Test MPC lifting operation on a single cell """ assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 1, 1, CellType.quadrilateral) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = x[1] * ufl.sin(2 * ufl.pi * x[0]) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Create Dirichlet boundary condition u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(2.3) def dirichletboundary(x): return np.isclose(x[0], 1) mesh.topology.create_connectivity(2, 1) geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary) bc = fem.dirichletbc(u_bc, geometrical_dofs) bcs = [bc] # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form, bcs=bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([0, 0]): {l2b([0, 1]): 1}} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() A = assemble_matrix(bilinear_form, mpc, bcs=bcs) b = assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) V_mpc = mpc.function_space u_out = fem.Function(V_mpc) u_out.vector.array[:] = uh.array root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) # constants = dolfinx_mpc.utils.gather_contants(mpc, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ (L_np) # - constants) # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vecto uh_numpy = K @ (d) # + constants) assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
# ----------------------Defining boundary conditions---------------------- # Inlet velocity Dirichlet BC inlet_velocity = fem.Function(V) inlet_velocity.interpolate(inlet_velocity_expression) inlet_velocity.x.scatter_forward() W0 = W.sub(0) dofs = fem.locate_dofs_topological((W0, V), 1, mt.find(3)) bc1 = fem.dirichletbc(inlet_velocity, dofs, W0) # Collect Dirichlet boundary conditions bcs = [bc1] # Slip conditions for walls n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1) with Timer("~Stokes: Create slip constraint"): mpc = MultiPointConstraint(W) mpc.create_slip_constraint(W.sub(0), (mt, 1), n, bcs=bcs) mpc.finalize() def tangential_proj(u: Expr, n: Expr): """ See for instance: https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf """ return (Identity(u.ufl_shape[0]) - outer(n, n)) * u def sym_grad(u: Expr): return sym(grad(u))
def bench_elasticity_edge(tetra: bool = True, r_lvl: int = 0, out_hdf5=None, xdmf: bool = False, boomeramg: bool = False, kspview: bool = False, degree: int = 1, info: bool = False): N = 3 for i in range(r_lvl): N *= 2 ct = CellType.tetrahedron if tetra else CellType.hexahedron mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, ct) # Get number of unknowns on each edge V = VectorFunctionSpace(mesh, ("Lagrange", int(degree))) # Generate Dirichlet BC (Fixed) u_bc = Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) def boundaries(x): return np.isclose(x[0], np.finfo(float).eps) fdim = mesh.topology.dim - 1 facets = locate_entities_boundary(mesh, fdim, boundaries) topological_dofs = locate_dofs_topological(V, fdim, facets) bc = dirichletbc(u_bc, topological_dofs) bcs = [bc] def PeriodicBoundary(x): return np.logical_and(np.isclose(x[0], 1), np.isclose(x[2], 0)) def periodic_relation(x): out_x = np.zeros(x.shape) out_x[0] = x[0] out_x[1] = x[1] out_x[2] = x[2] + 1 return out_x with Timer("~Elasticity: Initialize MPC"): edim = mesh.topology.dim - 2 edges = locate_entities_boundary(mesh, edim, PeriodicBoundary) arg_sort = np.argsort(edges) periodic_mt = meshtags(mesh, edim, edges[arg_sort], np.full(len(edges), 2, dtype=np.int32)) mpc = MultiPointConstraint(V) mpc.create_periodic_constraint_topological(V, periodic_mt, 2, periodic_relation, bcs, scale=0.5) mpc.finalize() # Create traction meshtag def traction_boundary(x): return np.isclose(x[0], 1) t_facets = locate_entities_boundary(mesh, fdim, traction_boundary) facet_values = np.ones(len(t_facets), dtype=np.int32) arg_sort = np.argsort(t_facets) mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values) # Elasticity parameters E = PETSc.ScalarType(1.0e4) nu = 0.1 mu = Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) g = Constant(mesh, PETSc.ScalarType((0, 0, -1e2))) x = SpatialCoordinate(mesh) f = Constant(mesh, PETSc.ScalarType(1e3)) * as_vector((0, -(x[2] - 0.5)**2, (x[1] - 0.5)**2)) # Stress computation def epsilon(v): return sym(grad(v)) def sigma(v): return (2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(len(v))) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx # Setup MPC system if info: log_info(f"Run {r_lvl}: Assembling matrix and vector") bilinear_form = form(a) linear_form = form(rhs) with Timer("~Elasticity: Assemble LHS and RHS"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) b = assemble_vector(linear_form, mpc) # Create nullspace for elasticity problem and assign to matrix null_space = rigid_motions_nullspace(mpc.function_space) A.setNearNullSpace(null_space) # Apply boundary conditions apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(b, bcs) opts = PETSc.Options() if boomeramg: opts["ksp_type"] = "cg" opts["ksp_rtol"] = 1.0e-5 opts["pc_type"] = "hypre" opts['pc_hypre_type'] = 'boomeramg' opts["pc_hypre_boomeramg_max_iter"] = 1 opts["pc_hypre_boomeramg_cycle_type"] = "v" # opts["pc_hypre_boomeramg_print_statistics"] = 1 else: opts["ksp_rtol"] = 1.0e-8 opts["pc_type"] = "gamg" opts["pc_gamg_type"] = "agg" opts["pc_gamg_coarse_eq_limit"] = 1000 opts["pc_gamg_sym_graph"] = True opts["mg_levels_ksp_type"] = "chebyshev" opts["mg_levels_pc_type"] = "jacobi" opts["mg_levels_esteig_ksp_type"] = "cg" opts["matptap_via"] = "scalable" opts["pc_gamg_square_graph"] = 2 opts["pc_gamg_threshold"] = 0.02 # opts["help"] = None # List all available options # opts["ksp_view"] = None # List progress of solver # Setup PETSc solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setFromOptions() if info: log_info(f"Run {r_lvl}: Solving") with Timer("~Elasticity: Solve problem") as timer: solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) solver_time = timer.elapsed() if kspview: solver.view() mem = sum(MPI.COMM_WORLD.allgather(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)) it = solver.getIterationNumber() num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs if out_hdf5 is not None: d_set = out_hdf5.get("its") d_set[r_lvl] = it d_set = out_hdf5.get("num_dofs") d_set[r_lvl] = num_dofs d_set = out_hdf5.get("num_slaves") d_set[r_lvl, MPI.COMM_WORLD.rank] = mpc.num_local_slaves d_set = out_hdf5.get("solve_time") d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0] if info: log_info(f"Lvl: {r_lvl}, Its: {it}, max Mem: {mem}, dim(V): {num_dofs}") if xdmf: # Write solution to file u_h = Function(mpc.function_space) u_h.vector.setArray(uh.array) u_h.name = "u_mpc" fname = f"results/bench_elasticity_edge_{r_lvl}.xdmf" with XDMFFile(MPI.COMM_WORLD, fname, "w") as outfile: outfile.write_mesh(mesh) outfile.write_function(u_h)
def demo_stacked_cubes(outfile: XDMFFile, theta: float, gmsh: bool = True, quad: bool = False, compare: bool = False, res: float = 0.1): log_info( f"Run theta:{theta:.2f}, Quad: {quad}, Gmsh {gmsh}, Res {res:.2e}") celltype = "quadrilateral" if quad else "triangle" if gmsh: mesh, mt = gmsh_2D_stacked(celltype, theta) mesh.name = f"mesh_{celltype}_{theta:.2f}_gmsh" else: mesh_name = "mesh" filename = f"meshes/mesh_{celltype}_{theta:.2f}.xdmf" mesh_2D_dolfin(celltype, theta) with XDMFFile(MPI.COMM_WORLD, filename, "r") as xdmf: mesh = xdmf.read_mesh(name=mesh_name) mesh.name = f"mesh_{celltype}_{theta:.2f}" tdim = mesh.topology.dim fdim = tdim - 1 mesh.topology.create_connectivity(tdim, tdim) mesh.topology.create_connectivity(fdim, tdim) mt = xdmf.read_meshtags(mesh, name="facet_tags") # Helper until meshtags can be read in from xdmf V = VectorFunctionSpace(mesh, ("Lagrange", 1)) r_matrix = rotation_matrix([0, 0, 1], theta) g_vec = np.dot(r_matrix, [0, -1.25e2, 0]) g = Constant(mesh, PETSc.ScalarType(g_vec[:2])) def bottom_corner(x): return np.isclose(x, [[0], [0], [0]]).all(axis=0) # Fix bottom corner bc_value = np.array((0, ) * mesh.geometry.dim, dtype=PETSc.ScalarType) bottom_dofs = locate_dofs_geometrical(V, bottom_corner) bc_bottom = dirichletbc(bc_value, bottom_dofs, V) bcs = [bc_bottom] # Elasticity parameters E = PETSc.ScalarType(1.0e3) nu = 0 mu = Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3) rhs = inner(Constant(mesh, PETSc.ScalarType( (0, 0))), v) * dx + inner(g, v) * ds def left_corner(x): return np.isclose(x.T, np.dot(r_matrix, [0, 2, 0])).all(axis=1) # Create multi point constraint mpc = MultiPointConstraint(V) with Timer("~Contact: Create contact constraint"): nh = create_normal_approximation(V, mt, 4) mpc.create_contact_slip_condition(mt, 4, 9, nh) with Timer("~Contact: Add non-slip condition at bottom interface"): bottom_normal = facet_normal_approximation(V, mt, 5) mpc.create_slip_constraint(V, (mt, 5), bottom_normal, bcs=bcs) with Timer("~Contact: Add tangential constraint at one point"): vertex = locate_entities_boundary(mesh, 0, left_corner) tangent = facet_normal_approximation(V, mt, 3, tangent=True) mtv = meshtags(mesh, 0, vertex, np.full(len(vertex), 6, dtype=np.int32)) mpc.create_slip_constraint(V, (mtv, 6), tangent, bcs=bcs) mpc.finalize() rtol = 1e-9 petsc_options = { "ksp_rtol": 1e-9, "pc_type": "gamg", "pc_gamg_type": "agg", "pc_gamg_square_graph": 2, "pc_gamg_threshold": 0.02, "pc_gamg_coarse_eq_limit": 1000, "pc_gamg_sym_graph": True, "mg_levels_ksp_type": "chebyshev", "mg_levels_pc_type": "jacobi", "mg_levels_esteig_ksp_type": "cg" # , "help": None, "ksp_view": None } # Solve Linear problem problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options) # Build near nullspace null_space = rigid_motions_nullspace(mpc.function_space) problem.A.setNearNullSpace(null_space) u_h = problem.solve() it = problem.solver.getIterationNumber() if MPI.COMM_WORLD.rank == 0: print("Number of iterations: {0:d}".format(it)) unorm = u_h.vector.norm() if MPI.COMM_WORLD.rank == 0: print(f"Norm of u: {unorm}") # Write solution to file ext = "_gmsh" if gmsh else "" u_h.name = "u_mpc_{0:s}_{1:.2f}{2:s}".format(celltype, theta, ext) outfile.write_mesh(mesh) outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]") # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values if not compare: return log_info("Solving reference problem with global matrix (using numpy)") with Timer("~MPC: Reference problem"): # Generate reference matrices and unconstrained solution A_org = assemble_matrix(form(a), bcs) A_org.assemble() L_org = assemble_vector(form(rhs)) apply_lifting(L_org, [form(a)], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(L_org, bcs) root = 0 with Timer("~MPC: Verification"): compare_mpc_lhs(A_org, problem.A, mpc, root=root) compare_mpc_rhs(L_org, problem.b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = gather_PETScMatrix(A_org, root=root) K = gather_transformation_matrix(mpc, root=root) L_np = gather_PETScVector(L_org, root=root) u_mpc = gather_PETScVector(u_h.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc, rtol=rtol)
def demo_stacked_cubes(theta, ct, noslip, num_refinements, N0, timings=False): celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron" type_ext = "no_slip" if noslip else "slip" log_info(f"Run theta: {theta:.2f}, Cell: {celltype:s}, Noslip: {noslip:b}") # Read in mesh mesh_3D_dolfin(theta=theta, ct=ct, ext=celltype, num_refinements=num_refinements, N0=N0) comm.barrier() with XDMFFile(comm, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf: mesh = xdmf.read_mesh(name="mesh") tdim = mesh.topology.dim fdim = tdim - 1 mesh.topology.create_connectivity(tdim, tdim) mesh.topology.create_connectivity(fdim, tdim) mt = xdmf.read_meshtags(mesh, "facet_tags") mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext:s}" # Create functionspaces V = VectorFunctionSpace(mesh, ("Lagrange", 1)) # Define boundary conditions # Bottom boundary is fixed in all directions u_bc = Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bottom_dofs = locate_dofs_topological(V, fdim, mt.find(5)) bc_bottom = dirichletbc(u_bc, bottom_dofs) g_vec = [0, 0, -4.25e-1] if not noslip: # Helper for orienting traction r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta) # Top boundary has a given deformation normal to the interface g_vec = np.dot(r_matrix, [0, 0, -4.25e-1]) def top_v(x): values = np.empty((3, x.shape[1])) values[0] = g_vec[0] values[1] = g_vec[1] values[2] = g_vec[2] return values u_top = Function(V) u_top.interpolate(top_v) u_top.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT_VALUES, mode=PETSc.ScatterMode.FORWARD) top_dofs = locate_dofs_topological(V, fdim, mt.find(3)) bc_top = dirichletbc(u_top, top_dofs) bcs = [bc_bottom, bc_top] # Elasticity parameters E = PETSc.ScalarType(1.0e3) nu = 0 mu = Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx rhs = inner(Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx log_info("Create constraints") mpc = MultiPointConstraint(V) num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs if noslip: with Timer(f"{num_dofs}: Contact-constraint"): mpc.create_contact_inelastic_condition(mt, 4, 9) else: with Timer(f"{num_dofs}: FacetNormal"): nh = create_normal_approximation(V, mt, 4) with Timer(f"{num_dofs}: Contact-constraint"): mpc.create_contact_slip_condition(mt, 4, 9, nh) with Timer(f"{num_dofs}: MPC-init"): mpc.finalize() null_space = rigid_motions_nullspace(mpc.function_space) log_info(f"Num dofs: {num_dofs}") log_info("Assemble matrix") bilinear_form = form(a) linear_form = form(rhs) with Timer(f"{num_dofs}: Assemble-matrix (C++)"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer(f"{num_dofs}: Assemble-vector (C++)"): b = assemble_vector(linear_form, mpc) apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(b, bcs) list_timings(MPI.COMM_WORLD, [TimingType.wall]) # Solve Linear problem opts = PETSc.Options() # opts["ksp_rtol"] = 1.0e-8 opts["pc_type"] = "gamg" # opts["pc_gamg_type"] = "agg" # opts["pc_gamg_coarse_eq_limit"] = 1000 # opts["pc_gamg_sym_graph"] = True # opts["mg_levels_ksp_type"] = "chebyshev" # opts["mg_levels_pc_type"] = "jacobi" # opts["mg_levels_esteig_ksp_type"] = "cg" # opts["matptap_via"] = "scalable" # opts["pc_gamg_square_graph"] = 2 # opts["pc_gamg_threshold"] = 1e-2 # opts["help"] = None # List all available options if timings: opts["ksp_view"] = None # List progress of solver # Create functionspace and build near nullspace A.setNearNullSpace(null_space) solver = PETSc.KSP().create(comm) solver.setOperators(A) solver.setFromOptions() uh = b.copy() uh.set(0) log_info("Solve") with Timer(f"{num_dofs}: Solve"): solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) log_info("Backsub") with Timer(f"{num_dofs}: Backsubstitution"): mpc.backsubstitution(uh) it = solver.getIterationNumber() # Write solution to file u_h = Function(mpc.function_space) u_h.vector.setArray(uh.array) u_h.name = "u" with XDMFFile(comm, f"results/bench_contact_{num_dofs}.xdmf", "w") as outfile: outfile.write_mesh(mesh) outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]") # Write performance data to file if timings: log_info("Timings") num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM) results_file = None num_procs = comm.size if comm.rank == 0: results_file = open(f"results_bench_{num_dofs}.txt", "w") print(f"#Procs: {num_procs}", file=results_file) print(f"#Dofs: {num_dofs}", file=results_file) print(f"#Slaves: {num_slaves}", file=results_file) print(f"#Iterations: {it}", file=results_file) operations = [ "Solve", "Assemble-matrix (C++)", "MPC-init", "Contact-constraint", "FacetNormal", "Assemble-vector (C++)", "Backsubstitution" ] if comm.rank == 0: print("Operation #Calls Avg Min Max", file=results_file) for op in operations: op_timing = timing(f"{num_dofs}: {op}") num_calls = op_timing[0] wall_time = op_timing[1] avg_time = comm.allreduce(wall_time, op=MPI.SUM) / comm.size min_time = comm.allreduce(wall_time, op=MPI.MIN) max_time = comm.allreduce(wall_time, op=MPI.MAX) if comm.rank == 0: print(op, num_calls, avg_time, min_time, max_time, file=results_file) list_timings(MPI.COMM_WORLD, [TimingType.wall])
def demo_elasticity(): mesh = create_unit_square(MPI.COMM_WORLD, 10, 10) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Generate Dirichlet BC on lower boundary (Fixed) def boundaries(x): return np.isclose(x[0], np.finfo(float).eps) facets = locate_entities_boundary(mesh, 1, boundaries) topological_dofs = fem.locate_dofs_topological(V, 1, facets) bc = fem.dirichletbc(np.array([0, 0], dtype=PETSc.ScalarType), topological_dofs, V) bcs = [bc] # Define variational problem u = TrialFunction(V) v = TestFunction(V) # Elasticity parameters E = PETSc.ScalarType(1.0e4) nu = 0.0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))) x = SpatialCoordinate(mesh) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx rhs = inner(as_vector((0, (x[0] - 0.5) * 10**4 * x[1])), v) * dx # Create MPC def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.9}} mpc = MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 1, 1) mpc.finalize() # Solve Linear problem petsc_options = {"ksp_type": "preonly", "pc_type": "lu"} problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options) u_h = problem.solve() u_h.name = "u_mpc" with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf", "w") as outfile: outfile.write_mesh(mesh) outfile.write_function(u_h) # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values bilinear_form = fem.form(a) A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() linear_form = fem.form(rhs) L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A_org) u_ = fem.Function(V) solver.solve(L_org, u_.vector) u_.x.scatter_forward() u_.name = "u_unconstrained" with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf", "a") as outfile: outfile.write_function(u_) outfile.close() root = 0 with Timer("~Demo: Verification"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem.A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem.b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) # Print out master-slave connectivity for the first slave master_owner = None master_data = None slave_owner = None if mpc.num_local_slaves > 0: slave_owner = MPI.COMM_WORLD.rank bs = mpc.function_space.dofmap.index_map_bs slave = mpc.slaves[0] print("Constrained: {0:.5e}\n Unconstrained: {1:.5e}".format( u_h.x.array[slave], u_.vector.array[slave])) master_owner = mpc._cpp_object.owners.links(slave)[0] _masters = mpc.masters master = _masters.links(slave)[0] glob_master = mpc.function_space.dofmap.index_map.local_to_global( [master // bs])[0] coeffs, offs = mpc.coefficients() master_data = [ glob_master * bs + master % bs, coeffs[offs[slave]:offs[slave + 1]][0] ] # If master not on proc send info to this processor if MPI.COMM_WORLD.rank != master_owner: MPI.COMM_WORLD.send(master_data, dest=master_owner, tag=1) else: print("Master*Coeff: {0:.5e}".format( coeffs[offs[slave]:offs[slave + 1]][0] * u_h.x.array[_masters.links(slave)[0]])) # As a processor with a master is not aware that it has a master, # Determine this so that it can receive the global dof and coefficient master_recv = MPI.COMM_WORLD.allgather(master_owner) for master in master_recv: if master is not None: master_owner = master break if slave_owner != master_owner and MPI.COMM_WORLD.rank == master_owner: dofmap = mpc.function_space.dofmap bs = dofmap.index_map_bs in_data = MPI.COMM_WORLD.recv(source=MPI.ANY_SOURCE, tag=1) num_local = dofmap.index_map.size_local + dofmap.index_map.num_ghosts l2g = dofmap.index_map.local_to_global( np.arange(num_local, dtype=np.int32)) l_index = np.flatnonzero(l2g == in_data[0] // bs)[0] print("Master*Coeff (on other proc): {0:.5e}".format( u_h.x.array[l_index * bs + in_data[0] % bs] * in_data[1]))
def assemble_matrix(form: _forms, constraint: MultiPointConstraint, bcs: List[_bcs] = None, diagval: _PETSc.ScalarType = 1., A: _PETSc.Mat = None): """ Assembles a compiled DOLFINx form with given a multi point constraint and possible Dirichlet boundary conditions. NOTE: Strong Dirichlet conditions cannot be on master dofs. Parameters ---------- form The compiled bilinear form constraint The multi point constraint bcs List of Dirichlet boundary conditions diagval Value to set on the diagonal of the matrix(Default 1) A PETSc matrix to assemble into (optional) """ timer_matrix = Timer("~MPC: Assemble matrix (numba)") V = constraint.function_space dofmap = V.dofmap dofs = dofmap.list.array # Pack MPC data for numba kernels coefficients = constraint.coefficients()[0] masters_adj = constraint.masters c_to_s_adj = constraint.cell_to_slaves cell_to_slave = c_to_s_adj.array c_to_s_off = c_to_s_adj.offsets is_slave = constraint.is_slave mpc_data = (masters_adj.array, coefficients, masters_adj.offsets, cell_to_slave, c_to_s_off, is_slave) slave_cells = extract_slave_cells(c_to_s_off) # Create 1D bc indicator for matrix assembly num_dofs_local = (dofmap.index_map.size_local + dofmap.index_map.num_ghosts) * dofmap.index_map_bs is_bc = numpy.zeros(num_dofs_local, dtype=bool) bcs = [] if bcs is None else bcs if len(bcs) > 0: for bc in bcs: is_bc[bc.dof_indices()[0]] = True # Get data from mesh pos = V.mesh.geometry.dofmap.offsets x_dofs = V.mesh.geometry.dofmap.array x = V.mesh.geometry.x # Pack constants and coefficients form_coeffs = _cpp.fem.pack_coefficients(form) form_consts = _cpp.fem.pack_constants(form) # Create sparsity pattern and matrix if not supplied if A is None: pattern = create_sparsity_pattern(form, constraint) pattern.assemble() A = _cpp.la.petsc.create_matrix(V.mesh.comm, pattern) A.zeroEntries() # Assemble the matrix with all entries _cpp.fem.petsc.assemble_matrix(A, form, form_consts, form_coeffs, bcs, False) # General assembly data block_size = dofmap.dof_layout.block_size num_dofs_per_element = dofmap.dof_layout.num_dofs tdim = V.mesh.topology.dim # Assemble over cells subdomain_ids = form.integral_ids(_fem.IntegralType.cell) num_cell_integrals = len(subdomain_ids) e0 = form.function_spaces[0].element e1 = form.function_spaces[1].element # Get dof transformations needs_transformation_data = e0.needs_dof_transformations or e1.needs_dof_transformations or \ form.needs_facet_permutations cell_perms = numpy.array([], dtype=numpy.uint32) if needs_transformation_data: V.mesh.topology.create_entity_permutations() cell_perms = V.mesh.topology.get_cell_permutation_info() # NOTE: Here we need to add the apply_dof_transformation and apply_dof_transformation transpose functions # to support more exotic elements if e0.needs_dof_transformations or e1.needs_dof_transformations: raise NotImplementedError("Dof transformations not implemented") is_complex = numpy.issubdtype(_PETSc.ScalarType, numpy.complexfloating) nptype = "complex128" if is_complex else "float64" ufcx_form = form.ufcx_form if num_cell_integrals > 0: V.mesh.topology.create_entity_permutations() for i, id in enumerate(subdomain_ids): coeffs_i = form_coeffs[(_fem.IntegralType.cell, id)] cell_kernel = getattr(ufcx_form.integrals(_fem.IntegralType.cell)[i], f"tabulate_tensor_{nptype}") active_cells = form.domains(_fem.IntegralType.cell, id) assemble_slave_cells(A.handle, cell_kernel, active_cells[numpy.isin(active_cells, slave_cells)], (pos, x_dofs, x), coeffs_i, form_consts, cell_perms, dofs, block_size, num_dofs_per_element, mpc_data, is_bc) # Assemble over exterior facets subdomain_ids = form.integral_ids(_fem.IntegralType.exterior_facet) num_exterior_integrals = len(subdomain_ids) if num_exterior_integrals > 0: V.mesh.topology.create_entities(tdim - 1) V.mesh.topology.create_connectivity(tdim - 1, tdim) # Get facet permutations if required facet_perms = numpy.array([], dtype=numpy.uint8) if form.needs_facet_permutations: facet_perms = V.mesh.topology.get_facet_permutations() perm = (cell_perms, form.needs_facet_permutations, facet_perms) for i, id in enumerate(subdomain_ids): facet_kernel = getattr(ufcx_form.integrals(_fem.IntegralType.exterior_facet) [i], f"tabulate_tensor_{nptype}") facets = form.domains(_fem.IntegralType.exterior_facet, id) coeffs_i = form_coeffs[(_fem.IntegralType.exterior_facet, id)] facet_info = pack_slave_facet_info(facets, slave_cells) num_facets_per_cell = len(V.mesh.topology.connectivity(tdim, tdim - 1).links(0)) assemble_exterior_slave_facets(A.handle, facet_kernel, (pos, x_dofs, x), coeffs_i, form_consts, perm, dofs, block_size, num_dofs_per_element, facet_info, mpc_data, is_bc, num_facets_per_cell) # Add mpc entries on diagonal slaves = constraint.slaves num_local_slaves = constraint.num_local_slaves add_diagonal(A.handle, slaves[:num_local_slaves], diagval) # Add one on diagonal for diriclet bc and slave dofs # NOTE: In the future one could use a constant in the dirichletbc if form.function_spaces[0] is form.function_spaces[1]: A.assemblyBegin(_PETSc.Mat.AssemblyType.FLUSH) A.assemblyEnd(_PETSc.Mat.AssemblyType.FLUSH) _cpp.fem.petsc.insert_diagonal(A, form.function_spaces[0], bcs, diagval) A.assemble() timer_matrix.stop() return A
def test_surface_integrals(get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers N = 4 mesh = create_unit_square(MPI.COMM_WORLD, N, N) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Fixed Dirichlet BC on the left wall def left_wall(x): return np.isclose(x[0], np.finfo(float).eps) fdim = mesh.topology.dim - 1 left_facets = locate_entities_boundary(mesh, fdim, left_wall) bc_dofs = fem.locate_dofs_topological(V, 1, left_facets) u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bc = fem.dirichletbc(u_bc, bc_dofs) bcs = [bc] # Traction on top of domain def top(x): return np.isclose(x[1], 1) top_facets = locate_entities_boundary(mesh, 1, top) arg_sort = np.argsort(top_facets) mt = meshtags(mesh, fdim, top_facets[arg_sort], np.full(len(top_facets), 3, dtype=np.int32)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3) g = fem.Constant(mesh, PETSc.ScalarType((0, -9.81e2))) # Elasticity parameters E = PETSc.ScalarType(1.0e4) nu = 0.0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v))) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType((0, 0))), v) * ufl.dx\ + ufl.inner(g, v) * ds bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Setup LU solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) # Setup multipointconstraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {} for i in range(1, N): s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.8} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 1, 1) mpc.finalize() with Timer("~TEST: Assemble matrix old"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Write solution to file # u_h = dolfinx.Function(mpc.function_space) # u_h.vector.setArray(uh.array) # u_h.name = "u_mpc" # outfile = dolfinx.io.XDMFFile(MPI.COMM_WORLD, "output/uh.xdmf", "w") # outfile.write_mesh(mesh) # outfile.write_function(u_h) # outfile.close() # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values # Generate reference matrices and unconstrained solution A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_pipeline(master_point, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 3, 5) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) d = fem.Constant(mesh, PETSc.ScalarType(1.5)) c = fem.Constant(mesh, PETSc.ScalarType(2)) x = ufl.SpatialCoordinate(mesh) f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) g = fem.Function(V) g.interpolate(lambda x: np.sin(x[0]) * x[1]) h = fem.Function(V) h.interpolate(lambda x: 2 + x[1] * x[0]) a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = h * ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() A = assemble_matrix(bilinear_form, mpc) b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def mesh_3D_dolfin(theta=0, ct=CellType.tetrahedron, ext="tetrahedron", num_refinements=0, N0=5): timer = Timer("Create mesh") def find_plane_function(p0, p1, p2): """ Find plane function given three points: http://www.nabla.hr/CG-LinesPlanesIn3DA3.htm """ v1 = np.array(p1) - np.array(p0) v2 = np.array(p2) - np.array(p0) n = np.cross(v1, v2) D = -(n[0] * p0[0] + n[1] * p0[1] + n[2] * p0[2]) return lambda x: np.isclose(0, np.dot(n, x) + D) def over_plane(p0, p1, p2): """ Returns function that checks if a point is over a plane defined by the points p0, p1 and p2. """ v1 = np.array(p1) - np.array(p0) v2 = np.array(p2) - np.array(p0) n = np.cross(v1, v2) D = -(n[0] * p0[0] + n[1] * p0[1] + n[2] * p0[2]) return lambda x: n[0] * x[0] + n[1] * x[1] + D > -n[2] * x[2] tmp_mesh_name = "tmp_mesh.xdmf" r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta) if MPI.COMM_WORLD.rank == 0: # Create two coarse meshes and merge them mesh0 = create_unit_cube(MPI.COMM_SELF, N0, N0, N0, ct) mesh0.geometry.x[:, 2] += 1 mesh1 = create_unit_cube(MPI.COMM_SELF, 2 * N0, 2 * N0, 2 * N0, ct) tdim0 = mesh0.topology.dim num_cells0 = mesh0.topology.index_map(tdim0).size_local cells0 = entities_to_geometry( mesh0, tdim0, np.arange(num_cells0, dtype=np.int32).reshape((-1, 1)), False) tdim1 = mesh1.topology.dim num_cells1 = mesh1.topology.index_map(tdim1).size_local cells1 = entities_to_geometry( mesh1, tdim1, np.arange(num_cells1, dtype=np.int32).reshape((-1, 1)), False) cells1 += mesh0.geometry.x.shape[0] # Concatenate points and cells points = np.vstack([mesh0.geometry.x, mesh1.geometry.x]) cells = np.vstack([cells0, cells1]) cell = Cell(ext, geometric_dimension=points.shape[1]) domain = Mesh(VectorElement("Lagrange", cell, 1)) # Rotate mesh points = np.dot(r_matrix, points.T).T mesh = create_mesh(MPI.COMM_SELF, cells, points, domain) with XDMFFile(MPI.COMM_SELF, tmp_mesh_name, "w") as xdmf: xdmf.write_mesh(mesh) MPI.COMM_WORLD.barrier() with XDMFFile(MPI.COMM_WORLD, tmp_mesh_name, "r") as xdmf: mesh = xdmf.read_mesh() # Refine coarse mesh for i in range(num_refinements): mesh.topology.create_entities(mesh.topology.dim - 2) mesh = refine(mesh, redistribute=True) tdim = mesh.topology.dim fdim = tdim - 1 # Find information about facets to be used in meshtags bottom_points = np.dot( r_matrix, np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]]).T) bottom = find_plane_function(bottom_points[:, 0], bottom_points[:, 1], bottom_points[:, 2]) bottom_facets = locate_entities_boundary(mesh, fdim, bottom) top_points = np.dot( r_matrix, np.array([[0, 0, 2], [1, 0, 2], [0, 1, 2], [1, 1, 2]]).T) top = find_plane_function(top_points[:, 0], top_points[:, 1], top_points[:, 2]) top_facets = locate_entities_boundary(mesh, fdim, top) # Determine interface facets if_points = np.dot( r_matrix, np.array([[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]).T) interface = find_plane_function(if_points[:, 0], if_points[:, 1], if_points[:, 2]) i_facets = locate_entities_boundary(mesh, fdim, interface) mesh.topology.create_connectivity(fdim, tdim) top_interface = [] bottom_interface = [] facet_to_cell = mesh.topology.connectivity(fdim, tdim) num_cells = mesh.topology.index_map(tdim).size_local # Find top and bottom interface facets cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells)) top_cube = over_plane(if_points[:, 0], if_points[:, 1], if_points[:, 2]) for facet in i_facets: i_cells = facet_to_cell.links(facet) assert (len(i_cells == 1)) i_cell = i_cells[0] if top_cube(cell_midpoints[i_cell]): top_interface.append(facet) else: bottom_interface.append(facet) # Create cell tags num_cells = mesh.topology.index_map(tdim).size_local cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells)) top_cube_marker = 2 indices = [] values = [] for cell_index in range(num_cells): if top_cube(cell_midpoints[cell_index]): indices.append(cell_index) values.append(top_cube_marker) ct = meshtags(mesh, tdim, np.array(indices, dtype=np.intc), np.array(values, dtype=np.intc)) # Create meshtags for facet data markers = { 3: top_facets, 4: bottom_interface, 9: top_interface, 5: bottom_facets } # , 6: left_facets, 7: right_facets} indices = np.array([], dtype=np.intc) values = np.array([], dtype=np.intc) for key in markers.keys(): indices = np.append(indices, markers[key]) values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc)) sorted_indices = np.argsort(indices) mt = meshtags(mesh, fdim, indices[sorted_indices], values[sorted_indices]) mt.name = "facet_tags" fname = f"meshes/mesh_{ext}_{theta:.2f}.xdmf" with XDMFFile(MPI.COMM_WORLD, fname, "w") as o_f: o_f.write_mesh(mesh) o_f.write_meshtags(ct) o_f.write_meshtags(mt) timer.stop()
def demo_stacked_cubes(outfile: XDMFFile, theta: float, gmsh: bool = False, ct: CellType = CellType.tetrahedron, compare: bool = True, res: float = 0.1, noslip: bool = False): celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron" type_ext = "no_slip" if noslip else "slip" mesh_ext = "_gmsh_" if gmsh else "_" log_info(f"Run theta:{theta:.2f}, Cell: {celltype}, GMSH {gmsh}, Noslip: {noslip}") # Read in mesh if gmsh: mesh, mt = gmsh_3D_stacked(celltype, theta, res) tdim = mesh.topology.dim fdim = tdim - 1 mesh.topology.create_connectivity(tdim, tdim) mesh.topology.create_connectivity(fdim, tdim) else: mesh_3D_dolfin(theta, ct, celltype, res) MPI.COMM_WORLD.barrier() with XDMFFile(MPI.COMM_WORLD, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf: mesh = xdmf.read_mesh(name="mesh") tdim = mesh.topology.dim fdim = tdim - 1 mesh.topology.create_connectivity(tdim, tdim) mesh.topology.create_connectivity(fdim, tdim) mt = xdmf.read_meshtags(mesh, "facet_tags") mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext}{mesh_ext}" # Create functionspaces V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Define boundary conditions # Bottom boundary is fixed in all directions bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5)) # type: ignore u_bc = np.array((0, ) * mesh.geometry.dim, dtype=PETSc.ScalarType) bc_bottom = fem.dirichletbc(u_bc, bottom_dofs, V) g_vec = np.array([0, 0, -4.25e-1], dtype=PETSc.ScalarType) if not noslip: # Helper for orienting traction r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta) # Top boundary has a given deformation normal to the interface g_vec = np.dot(r_matrix, g_vec) top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3)) # type: ignore bc_top = fem.dirichletbc(g_vec, top_dofs, V) bcs = [bc_bottom, bc_top] # Elasticity parameters E = PETSc.ScalarType(1.0e3) nu = 0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx # NOTE: Traction deactivated until we have a way of fixing nullspace # g = fem.Constant(mesh, PETSc.ScalarType(g_vec)) # ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3) rhs = inner(fem.Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx # + inner(g, v) * ds bilinear_form = fem.form(a) linear_form = fem.form(rhs) mpc = MultiPointConstraint(V) if noslip: with Timer("~~Contact: Create non-elastic constraint"): mpc.create_contact_inelastic_condition(mt, 4, 9) else: with Timer("~Contact: Create contact constraint"): nh = create_normal_approximation(V, mt, 4) mpc.create_contact_slip_condition(mt, 4, 9, nh) with Timer("~~Contact: Add data and finialize MPC"): mpc.finalize() # Create null-space null_space = rigid_motions_nullspace(mpc.function_space) num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs with Timer(f"~~Contact: Assemble matrix ({num_dofs})"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer(f"~~Contact: Assemble vector ({num_dofs})"): b = assemble_vector(linear_form, mpc) apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) # Solve Linear problem opts = PETSc.Options() opts["ksp_rtol"] = 1.0e-8 opts["pc_type"] = "gamg" opts["pc_gamg_type"] = "agg" opts["pc_gamg_coarse_eq_limit"] = 1000 opts["pc_gamg_sym_graph"] = True opts["mg_levels_ksp_type"] = "chebyshev" opts["mg_levels_pc_type"] = "jacobi" opts["mg_levels_esteig_ksp_type"] = "cg" opts["matptap_via"] = "scalable" # opts["pc_gamg_square_graph"] = 2 # opts["pc_gamg_threshold"] = 1e-2 # opts["help"] = None # List all available options # opts["ksp_view"] = None # List progress of solver # Create functionspace and build near nullspace A.setNearNullSpace(null_space) solver = PETSc.KSP().create(mesh.comm) solver.setOperators(A) solver.setFromOptions() u_h = fem.Function(mpc.function_space) with Timer("~~Contact: Solve"): solver.solve(b, u_h.vector) u_h.x.scatter_forward() with Timer("~~Contact: Backsubstitution"): mpc.backsubstitution(u_h.vector) it = solver.getIterationNumber() unorm = u_h.vector.norm() num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM) if mesh.comm.rank == 0: num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs print(f"Number of dofs: {num_dofs}") print(f"Number of slaves: {num_slaves}") print(f"Number of iterations: {it}") print(f"Norm of u {unorm:.5e}") # Write solution to file u_h.name = f"u_{celltype}_{theta:.2f}{mesh_ext}{type_ext}".format(celltype, theta, type_ext, mesh_ext) outfile.write_mesh(mesh) outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]") # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values if not compare: return log_info("Solving reference problem with global matrix (using scipy)") with Timer("~~Contact: Reference problem"): A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) root = 0 with Timer("~~Contact: Compare LHS, RHS and solution"): compare_mpc_lhs(A_org, A, mpc, root=root) compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = gather_PETScMatrix(A_org, root=root) K = gather_transformation_matrix(mpc, root=root) L_np = gather_PETScVector(L_org, root=root) u_mpc = gather_PETScVector(u_h.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(mesh.comm, [TimingType.wall])
def test_cell_domains(get_assemblers): # noqa: F811 """ Periodic MPC conditions over integral with different cell subdomains """ assemble_matrix, assemble_vector = get_assemblers N = 5 # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 15, N) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) def left_side(x): return x[0] < 0.5 tdim = mesh.topology.dim num_cells = mesh.topology.index_map(tdim).size_local cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells)) values = np.ones(num_cells, dtype=np.intc) # All cells on right side marked one, all other with 1 values += left_side(cell_midpoints.T) ct = meshtags(mesh, mesh.topology.dim, np.arange(num_cells, dtype=np.int32), values) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) c1 = fem.Constant(mesh, PETSc.ScalarType(2)) c2 = fem.Constant(mesh, PETSc.ScalarType(10)) dx = ufl.Measure("dx", domain=mesh, subdomain_data=ct) a = c1 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(1) +\ c2 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(2)\ + 0.01 * ufl.inner(u, v) * dx(1) rhs = ufl.inner(x[1], v) * dx(1) + \ ufl.inner(fem.Constant(mesh, PETSc.ScalarType(1)), v) * dx(2) bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {} for i in range(0, N + 1): s_m_c[l2b([1, i / N])] = {l2b([0, i / N]): 1} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() # Setup MPC system with Timer("~TEST: Assemble matrix old"): A = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
bcs = [bc] def periodic_boundary(x): return np.isclose(x[0], 1) def periodic_relation(x): out_x = np.zeros(x.shape) out_x[0] = 1 - x[0] out_x[1] = x[1] out_x[2] = x[2] return out_x with Timer("~PERIODIC: Initialize MPC"): mpc = MultiPointConstraint(V) mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, bcs) mpc.finalize() # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(grad(u), grad(v)) * dx x = SpatialCoordinate(mesh) dx_ = x[0] - 0.9 dy_ = x[1] - 0.5 f = as_vector( (x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_) / 0.02),
def ref_elasticity(tetra: bool = True, r_lvl: int = 0, out_hdf5: h5py.File = None, xdmf: bool = False, boomeramg: bool = False, kspview: bool = False, degree: int = 1): if tetra: N = 3 if degree == 1 else 2 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N) else: N = 3 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron) for i in range(r_lvl): # set_log_level(LogLevel.INFO) N *= 2 if tetra: mesh = refine(mesh, redistribute=True) else: mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron) # set_log_level(LogLevel.ERROR) N = degree * N fdim = mesh.topology.dim - 1 V = VectorFunctionSpace(mesh, ("Lagrange", int(degree))) # Generate Dirichlet BC on lower boundary (Fixed) u_bc = Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) def boundaries(x): return np.isclose(x[0], np.finfo(float).eps) facets = locate_entities_boundary(mesh, fdim, boundaries) topological_dofs = locate_dofs_topological(V, fdim, facets) bc = dirichletbc(u_bc, topological_dofs) bcs = [bc] # Create traction meshtag def traction_boundary(x): return np.isclose(x[0], 1) t_facets = locate_entities_boundary(mesh, fdim, traction_boundary) facet_values = np.ones(len(t_facets), dtype=np.int32) arg_sort = np.argsort(t_facets) mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values[arg_sort]) # Elasticity parameters E = PETSc.ScalarType(1.0e4) nu = 0.1 mu = Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) g = Constant(mesh, PETSc.ScalarType((0, 0, -1e2))) x = SpatialCoordinate(mesh) f = Constant(mesh, PETSc.ScalarType(1e4)) * \ as_vector((0, -(x[2] - 0.5)**2, (x[1] - 0.5)**2)) # Stress computation def sigma(v): return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs if MPI.COMM_WORLD.rank == 0: print("Problem size {0:d} ".format(num_dofs)) # Generate reference matrices and unconstrained solution bilinear_form = form(a) A_org = assemble_matrix(bilinear_form, bcs) A_org.assemble() null_space_org = rigid_motions_nullspace(V) A_org.setNearNullSpace(null_space_org) linear_form = form(rhs) L_org = assemble_vector(linear_form) apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(L_org, bcs) opts = PETSc.Options() if boomeramg: opts["ksp_type"] = "cg" opts["ksp_rtol"] = 1.0e-5 opts["pc_type"] = "hypre" opts['pc_hypre_type'] = 'boomeramg' opts["pc_hypre_boomeramg_max_iter"] = 1 opts["pc_hypre_boomeramg_cycle_type"] = "v" # opts["pc_hypre_boomeramg_print_statistics"] = 1 else: opts["ksp_rtol"] = 1.0e-8 opts["pc_type"] = "gamg" opts["pc_gamg_type"] = "agg" opts["pc_gamg_coarse_eq_limit"] = 1000 opts["pc_gamg_sym_graph"] = True opts["mg_levels_ksp_type"] = "chebyshev" opts["mg_levels_pc_type"] = "jacobi" opts["mg_levels_esteig_ksp_type"] = "cg" opts["matptap_via"] = "scalable" opts["pc_gamg_square_graph"] = 2 opts["pc_gamg_threshold"] = 0.02 # opts["help"] = None # List all available options # opts["ksp_view"] = None # List progress of solver # Create solver, set operator and options solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setFromOptions() solver.setOperators(A_org) # Solve linear problem u_ = Function(V) start = perf_counter() with Timer("Ref solve"): solver.solve(L_org, u_.vector) end = perf_counter() u_.x.scatter_forward() if kspview: solver.view() it = solver.getIterationNumber() if out_hdf5 is not None: d_set = out_hdf5.get("its") d_set[r_lvl] = it d_set = out_hdf5.get("num_dofs") d_set[r_lvl] = num_dofs d_set = out_hdf5.get("solve_time") d_set[r_lvl, MPI.COMM_WORLD.rank] = end - start if MPI.COMM_WORLD.rank == 0: print("Refinement level {0:d}, Iterations {1:d}".format(r_lvl, it)) # List memory usage mem = sum(MPI.COMM_WORLD.allgather( resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)) if MPI.COMM_WORLD.rank == 0: print("{1:d}: Max usage after trad. solve {0:d} (kb)" .format(mem, r_lvl)) if xdmf: # Name formatting of functions u_.name = "u_unconstrained" fname = "results/ref_elasticity_{0:d}.xdmf".format(r_lvl) with XDMFFile(MPI.COMM_WORLD, fname, "w") as out_xdmf: out_xdmf.write_mesh(mesh) out_xdmf.write_function(u_, 0.0, "Xdmf/Domain/Grid[@Name='{0:s}'][1]".format(mesh.name))
def test_surface_integral_dependency(get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers N = 10 mesh = create_unit_square(MPI.COMM_WORLD, N, N) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) def top(x): return np.isclose(x[1], 1) fdim = mesh.topology.dim - 1 top_facets = locate_entities_boundary(mesh, fdim, top) indices = np.array([], dtype=np.intc) values = np.array([], dtype=np.intc) markers = {3: top_facets} for key in markers.keys(): indices = np.append(indices, markers[key]) values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc)) sort = np.argsort(indices) mt = meshtags(mesh, mesh.topology.dim - 1, np.array(indices[sort], dtype=np.intc), np.array(values[sort], dtype=np.intc)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt) g = fem.Constant(mesh, PETSc.ScalarType((2, 1))) h = fem.Constant(mesh, PETSc.ScalarType((3, 2))) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(u, v) * ds(3) + ufl.inner(ufl.grad(u), ufl.grad(v)) * ds rhs = ufl.inner(g, v) * ds + ufl.inner(h, v) * ds(3) bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Create multipoint constraint and assemble system def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {} for i in range(1, N): s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.3} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 1, 1) mpc.finalize() with Timer("~TEST: Assemble matrix"): A = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values # Generate reference matrices and unconstrained solution A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) list_timings(comm, [TimingType.wall])
def assemble_vector(form: _forms, constraint: MultiPointConstraint, b: _PETSc.Vec = None) -> _PETSc.Vec: """ Assemble a compiled DOLFINx form into vector b. Parameters ---------- form The complied linear form constraint The multi point constraint b PETSc vector to assemble into (optional) """ _log.log(_log.LogLevel.INFO, "Assemble MPC vector") timer_vector = Timer("~MPC: Assemble vector (numba)") # Unpack Function space data V = form.function_spaces[0] pos = V.mesh.geometry.dofmap.offsets x_dofs = V.mesh.geometry.dofmap.array x = V.mesh.geometry.x dofs = V.dofmap.list().array block_size = V.dofmap.index_map_bs # Data from multipointconstraint coefficients = constraint.coefficients()[0] masters_adj = constraint.masters c_to_s_adj = constraint.cell_to_slaves cell_to_slave = c_to_s_adj.array c_to_s_off = c_to_s_adj.offsets is_slave = constraint.is_slave mpc_data = (masters_adj.array, coefficients, masters_adj.offsets, cell_to_slave, c_to_s_off, is_slave) slave_cells = extract_slave_cells(c_to_s_off) # Get index map and ghost info if b is None: index_map = constraint.function_space.dofmap.index_map vector = _cpp.la.petsc.create_vector(index_map, block_size) else: vector = b # Pack constants and coefficients form_coeffs = _cpp.fem.pack_coefficients(form) form_consts = _cpp.fem.pack_constants(form) tdim = V.mesh.topology.dim num_dofs_per_element = V.dofmap.dof_layout.num_dofs # Assemble vector with all entries with vector.localForm() as b_local: _cpp.fem.assemble_vector(b_local.array_w, form, form_consts, form_coeffs) # Check if we need facet permutations # FIXME: access apply_dof_transformations here e0 = form.function_spaces[0].element needs_transformation_data = e0.needs_dof_transformations or form.needs_facet_permutations cell_perms = numpy.array([], dtype=numpy.uint32) if needs_transformation_data: V.mesh.topology.create_entity_permutations() cell_perms = V.mesh.topology.get_cell_permutation_info() if e0.needs_dof_transformations: raise NotImplementedError("Dof transformations not implemented") # Assemble over cells subdomain_ids = form.integral_ids(_fem.IntegralType.cell) num_cell_integrals = len(subdomain_ids) is_complex = numpy.issubdtype(_PETSc.ScalarType, numpy.complexfloating) nptype = "complex128" if is_complex else "float64" ufcx_form = form.ufcx_form if num_cell_integrals > 0: V.mesh.topology.create_entity_permutations() for i, id in enumerate(subdomain_ids): cell_kernel = getattr(ufcx_form.integrals(_fem.IntegralType.cell)[i], f"tabulate_tensor_{nptype}") active_cells = form.domains(_fem.IntegralType.cell, id) coeffs_i = form_coeffs[(_fem.IntegralType.cell, id)] with vector.localForm() as b: assemble_cells(numpy.asarray(b), cell_kernel, active_cells[numpy.isin(active_cells, slave_cells)], (pos, x_dofs, x), coeffs_i, form_consts, cell_perms, dofs, block_size, num_dofs_per_element, mpc_data) # Assemble exterior facet integrals subdomain_ids = form.integral_ids(_fem.IntegralType.exterior_facet) num_exterior_integrals = len(subdomain_ids) if num_exterior_integrals > 0: V.mesh.topology.create_entities(tdim - 1) V.mesh.topology.create_connectivity(tdim - 1, tdim) # Get facet permutations if required facet_perms = numpy.array([], dtype=numpy.uint8) if form.needs_facet_permutations: facet_perms = V.mesh.topology.get_facet_permutations() perm = (cell_perms, form.needs_facet_permutations, facet_perms) for i, id in enumerate(subdomain_ids): facet_kernel = getattr(ufcx_form.integrals(_fem.IntegralType.exterior_facet)[i], f"tabulate_tensor_{nptype}") coeffs_i = form_coeffs[(_fem.IntegralType.exterior_facet, id)] facets = form.domains(_fem.IntegralType.exterior_facet, id) facet_info = pack_slave_facet_info(facets, slave_cells) num_facets_per_cell = len(V.mesh.topology.connectivity(tdim, tdim - 1).links(0)) with vector.localForm() as b: assemble_exterior_slave_facets(numpy.asarray(b), facet_kernel, facet_info, (pos, x_dofs, x), coeffs_i, form_consts, perm, dofs, block_size, num_dofs_per_element, mpc_data, num_facets_per_cell) timer_vector.stop() return vector
def test_linearproblem(master_point): # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 3, 5) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) d = fem.Constant(mesh, PETSc.ScalarType(1.5)) c = fem.Constant(mesh, PETSc.ScalarType(2)) x = ufl.SpatialCoordinate(mesh) f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) g = fem.Function(V) g.interpolate(lambda x: np.sin(x[0]) * x[1]) h = fem.Function(V) h.interpolate(lambda x: 2 + x[1] * x[0]) a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = h * ufl.inner(f, v) * ufl.dx # Generate reference matrices A_org = fem.petsc.assemble_matrix(fem.form(a)) A_org.assemble() L_org = fem.petsc.assemble_vector(fem.form(rhs)) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() problem = dolfinx_mpc.LinearProblem(a, rhs, mpc, bcs=[], petsc_options={ "ksp_type": "preonly", "pc_type": "lu" }) uh = problem.solve() root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem._A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem._b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_cube_contact(generate_hex_boxes, nonslip, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers comm = MPI.COMM_WORLD root = 0 # Generate mesh mesh_data = generate_hex_boxes mesh, mt = mesh_data fdim = mesh.topology.dim - 1 # Create functionspaces V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Helper for orienting traction # Bottom boundary is fixed in all directions u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5)) bc_bottom = fem.dirichletbc(u_bc, bottom_dofs) g_vec = [0, 0, -4.25e-1] if not nonslip: # Helper for orienting traction r_matrix = dolfinx_mpc.utils.rotation_matrix( [1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta) # Top boundary has a given deformation normal to the interface g_vec = np.dot(r_matrix, [0, 0, -4.25e-1]) # Top boundary has a given deformation normal to the interface def top_v(x): values = np.empty((3, x.shape[1])) values[0] = g_vec[0] values[1] = g_vec[1] values[2] = g_vec[2] return values u_top = fem.Function(V) u_top.interpolate(top_v) top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3)) bc_top = fem.dirichletbc(u_top, top_dofs) bcs = [bc_bottom, bc_top] # Elasticity parameters E = PETSc.ScalarType(1.0e3) nu = 0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v))) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType( (0, 0, 0))), v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Create LU solver solver = PETSc.KSP().create(comm) solver.setType("preonly") solver.setTolerances(rtol=1.0e-14) solver.getPC().setType("lu") # Create MPC contact condition and assemble matrices mpc = dolfinx_mpc.MultiPointConstraint(V) if nonslip: with Timer("~Contact: Create non-elastic constraint"): mpc.create_contact_inelastic_condition(mt, 4, 9) else: with Timer("~Contact: Create contact constraint"): nh = dolfinx_mpc.utils.create_normal_approximation(V, mt, 4) mpc.create_contact_slip_condition(mt, 4, 9, nh) mpc.finalize() with Timer("~TEST: Assemble bilinear form"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) with Timer("~MPC: Solve"): solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Write solution to file # u_h = fem.Function(mpc.function_space) # u_h.vector.setArray(uh.array) # u_h.x.scatter_forward() # u_h.name = "u_{0:.2f}".format(theta) # import dolfinx.io as io # with io.XDMFFile(comm, "output/rotated_cube3D.xdmf", "w") as outfile: # outfile.write_mesh(mesh) # outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]") # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values dolfinx_mpc.utils.log_info( "Solving reference problem with global matrix (using numpy)") with Timer("~TEST: Assemble bilinear form (unconstrained)"): A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_vector_possion(Nx, Ny, slave_space, master_space, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) def boundary(x): return np.isclose(x.T, [0, 0, 0]).all(axis=1) # Define boundary conditions (HAS TO BE NON-MASTER NODES) u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bdofsV = fem.locate_dofs_geometrical(V, boundary) bc = fem.dirichletbc(u_bc, bdofsV) bcs = [bc] # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = ufl.as_vector((-5 * x[1], 7 * x[0])) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Setup LU solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, slave_space, master_space) mpc.finalize() with Timer("~TEST: Assemble matrix"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = dolfinx_mpc.assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Generate reference matrices for unconstrained problem A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def reference_periodic(tetra: bool, r_lvl: int = 0, out_hdf5: h5py.File = None, xdmf: bool = False, boomeramg: bool = False, kspview: bool = False, degree: int = 1): # Create mesh and finite element if tetra: # Tet setup N = 3 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N) for i in range(r_lvl): mesh.topology.create_entities(mesh.topology.dim - 2) mesh = refine(mesh, redistribute=True) N *= 2 else: # Hex setup N = 3 for i in range(r_lvl): N *= 2 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron) V = FunctionSpace(mesh, ("CG", degree)) # Create Dirichlet boundary condition def dirichletboundary(x): return np.logical_or( np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)), np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1))) mesh.topology.create_connectivity(2, 1) geometrical_dofs = locate_dofs_geometrical(V, dirichletboundary) bc = dirichletbc(PETSc.ScalarType(0), geometrical_dofs, V) bcs = [bc] # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(grad(u), grad(v)) * dx x = SpatialCoordinate(mesh) dx_ = x[0] - 0.9 dy_ = x[1] - 0.5 dz_ = x[2] - 0.1 f = x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp( -(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02) rhs = inner(f, v) * dx # Assemble rhs, RHS and apply lifting bilinear_form = form(a) linear_form = form(rhs) A_org = assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = assemble_vector(linear_form) apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(L_org, bcs) # Create PETSc nullspace nullspace = PETSc.NullSpace().create(constant=True) PETSc.Mat.setNearNullSpace(A_org, nullspace) # Set PETSc options opts = PETSc.Options() if boomeramg: opts["ksp_type"] = "cg" opts["ksp_rtol"] = 1.0e-5 opts["pc_type"] = "hypre" opts['pc_hypre_type'] = 'boomeramg' opts["pc_hypre_boomeramg_max_iter"] = 1 opts["pc_hypre_boomeramg_cycle_type"] = "v" # opts["pc_hypre_boomeramg_print_statistics"] = 1 else: opts["ksp_type"] = "cg" opts["ksp_rtol"] = 1.0e-12 opts["pc_type"] = "gamg" opts["pc_gamg_type"] = "agg" opts["pc_gamg_sym_graph"] = True # Use Chebyshev smoothing for multigrid opts["mg_levels_ksp_type"] = "richardson" opts["mg_levels_pc_type"] = "sor" # opts["help"] = None # List all available options # opts["ksp_view"] = None # List progress of solver # Initialize PETSc solver, set options and operator solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setFromOptions() solver.setOperators(A_org) # Solve linear problem u_ = Function(V) start = perf_counter() with Timer("Solve"): solver.solve(L_org, u_.vector) end = perf_counter() u_.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) if kspview: solver.view() it = solver.getIterationNumber() num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs if out_hdf5 is not None: d_set = out_hdf5.get("its") d_set[r_lvl] = it d_set = out_hdf5.get("num_dofs") d_set[r_lvl] = num_dofs d_set = out_hdf5.get("solve_time") d_set[r_lvl, MPI.COMM_WORLD.rank] = end - start if MPI.COMM_WORLD.rank == 0: print("Rlvl {0:d}, Iterations {1:d}".format(r_lvl, it)) # Output solution to XDMF if xdmf: ext = "tet" if tetra else "hex" fname = "results/reference_periodic_{0:d}_{1:s}.xdmf".format( r_lvl, ext) u_.name = "u_" + ext + "_unconstrained" with XDMFFile(MPI.COMM_WORLD, fname, "w") as out_periodic: out_periodic.write_mesh(mesh) out_periodic.write_function( u_, 0.0, "Xdmf/Domain/" + "Grid[@Name='{0:s}'][1]".format(mesh.name))
def demo_periodic3D(celltype: CellType): # Create mesh and finite element if celltype == CellType.tetrahedron: # Tet setup N = 10 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N) V = fem.VectorFunctionSpace(mesh, ("CG", 1)) else: # Hex setup N = 10 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron) V = fem.VectorFunctionSpace(mesh, ("CG", 2)) def dirichletboundary(x: NDArray[np.float64]) -> NDArray[np.bool_]: return np.logical_or( np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)), np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1))) # Create Dirichlet boundary condition zero = PETSc.ScalarType([0, 0, 0]) geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary) bc = fem.dirichletbc(zero, geometrical_dofs, V) bcs = [bc] def PeriodicBoundary(x): return np.isclose(x[0], 1) facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary) arg_sort = np.argsort(facets) mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32)) def periodic_relation(x): out_x = np.zeros(x.shape) out_x[0] = 1 - x[0] out_x[1] = x[1] out_x[2] = x[2] return out_x with Timer("~~Periodic: Compute mpc condition"): mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_periodic_constraint_topological(V.sub(0), mt, 2, periodic_relation, bcs, 1) mpc.finalize() # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(grad(u), grad(v)) * dx x = SpatialCoordinate(mesh) dx_ = x[0] - 0.9 dy_ = x[1] - 0.5 dz_ = x[2] - 0.1 f = as_vector((x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02), 0.1 * dx_ * dz_, 0.1 * dx_ * dy_)) rhs = inner(f, v) * dx petsc_options: Dict[str, Union[str, float, int]] if complex_mode: rtol = 1e-16 petsc_options = {"ksp_type": "preonly", "pc_type": "lu"} else: rtol = 1e-8 petsc_options = { "ksp_type": "cg", "ksp_rtol": rtol, "pc_type": "hypre", "pc_hypre_typ": "boomeramg", "pc_hypre_boomeramg_max_iter": 1, "pc_hypre_boomeramg_cycle_type": "v", "pc_hypre_boomeramg_print_statistics": 1 } problem = LinearProblem(a, rhs, mpc, bcs, petsc_options=petsc_options) u_h = problem.solve() # --------------------VERIFICATION------------------------- print("----Verification----") u_ = fem.Function(V) u_.x.array[:] = 0 org_problem = fem.petsc.LinearProblem(a, rhs, u=u_, bcs=bcs, petsc_options=petsc_options) with Timer("~Periodic: Unconstrained solve"): org_problem.solve() it = org_problem.solver.getIterationNumber() print(f"Unconstrained solver iterations: {it}") # Write solutions to file ext = "tet" if celltype == CellType.tetrahedron else "hex" u_.name = "u_" + ext + "_unconstrained" # NOTE: Workaround as tabulate dof coordinates does not like extra ghosts u_out = fem.Function(V) old_local = u_out.x.map.size_local * u_out.x.bs old_ghosts = u_out.x.map.num_ghosts * u_out.x.bs mpc_local = u_h.x.map.size_local * u_h.x.bs assert (old_local == mpc_local) u_out.x.array[:old_local + old_ghosts] = u_h.x.array[:mpc_local + old_ghosts] u_out.name = "u_" + ext fname = f"results/demo_periodic3d_{ext}.bp" out_periodic = VTXWriter(MPI.COMM_WORLD, fname, u_out) out_periodic.write(0) out_periodic.close() root = 0 with Timer("~Demo: Verification"): dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A, problem.A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b, problem.b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc, rtol=rtol)
def bench_elasticity_one(r_lvl: int = 0, out_hdf5: h5py.File = None, xdmf: bool = False, boomeramg: bool = False, kspview: bool = False): N = 3 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N) for i in range(r_lvl): mesh.topology.create_entities(mesh.topology.dim - 2) mesh = refine(mesh, redistribute=True) fdim = mesh.topology.dim - 1 V = VectorFunctionSpace(mesh, ("Lagrange", 1)) # Generate Dirichlet BC on lower boundary (Fixed) u_bc = Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) def boundaries(x): return np.isclose(x[0], np.finfo(float).eps) facets = locate_entities_boundary(mesh, fdim, boundaries) topological_dofs = locate_dofs_topological(V, fdim, facets) bc = dirichletbc(u_bc, topological_dofs) bcs = [bc] # Create traction meshtag def traction_boundary(x): return np.isclose(x[0], 1) t_facets = locate_entities_boundary(mesh, fdim, traction_boundary) facet_values = np.ones(len(t_facets), dtype=np.int32) arg_sort = np.argsort(t_facets) mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values[arg_sort]) # Define variational problem u = TrialFunction(V) v = TestFunction(V) # Elasticity parameters E = 1.0e4 nu = 0.1 mu = Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) g = Constant(mesh, (0, 0, -1e2)) # Stress computation def sigma(v): return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity( len(v)) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) # Create MPC with Timer("~Elasticity: Init constraint"): def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([1, 0, 0]): {l2b([1, 0, 1]): 0.5}} mpc = MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 2, 2) mpc.finalize() # Setup MPC system bilinear_form = form(a) linear_form = form(rhs) with Timer("~Elasticity: Assemble LHS and RHS"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) b = assemble_vector(linear_form, mpc) # Apply boundary conditions apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(b, bcs) # Create functionspace and function for mpc vector # Solve Linear problem solver = PETSc.KSP().create(MPI.COMM_WORLD) opts = PETSc.Options() if boomeramg: opts["ksp_type"] = "cg" opts["ksp_rtol"] = 1.0e-5 opts["pc_type"] = "hypre" opts['pc_hypre_type'] = 'boomeramg' opts["pc_hypre_boomeramg_max_iter"] = 1 opts["pc_hypre_boomeramg_cycle_type"] = "v" # opts["pc_hypre_boomeramg_print_statistics"] = 1 else: opts["ksp_rtol"] = 1.0e-10 opts["pc_type"] = "gamg" opts["pc_gamg_type"] = "agg" opts["pc_gamg_coarse_eq_limit"] = 1000 opts["pc_gamg_sym_graph"] = True opts["mg_levels_ksp_type"] = "chebyshev" opts["mg_levels_pc_type"] = "jacobi" opts["mg_levels_esteig_ksp_type"] = "cg" opts["matptap_via"] = "scalable" # opts["help"] = None # List all available options # opts["ksp_view"] = None # List progress of solver with Timer("~Elasticity: Solve problem") as timer: null_space = rigid_motions_nullspace(mpc.function_space) A.setNearNullSpace(null_space) solver.setFromOptions() solver.setOperators(A) # Solve linear problem uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) solver_time = timer.elapsed() it = solver.getIterationNumber() if kspview: solver.view() # Print max usage of summary mem = sum( MPI.COMM_WORLD.allgather( resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)) num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs if MPI.COMM_WORLD.rank == 0: print(f"Rlvl {r_lvl}, Iterations {it}") print(f"Rlvl {r_lvl}, Max usage {mem} (kb), #dofs {num_dofs}") if out_hdf5 is not None: d_set = out_hdf5.get("its") d_set[r_lvl] = it d_set = out_hdf5.get("num_dofs") d_set[r_lvl] = num_dofs d_set = out_hdf5.get("solve_time") d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0] if xdmf: # Write solution to file u_h = Function(mpc.function_space) u_h.vector.setArray(uh.array) u_h.name = "u_mpc" fname = f"results/bench_elasticity_{r_lvl}.xdmf" with XDMFFile(MPI.COMM_WORLD, fname, "w") as outfile: outfile.write_mesh(mesh) outfile.write_function(u_h)