def _create_tempdir(request): # Get directory name of test_foo.py file testfile = request.module.__file__ testfiledir = os.path.dirname(os.path.abspath(testfile)) # Construct name test_foo_tempdir from name test_foo.py testfilename = os.path.basename(testfile) outputname = testfilename.replace(".py", "_tempdir_{}".format( worker_id(request))) # Get function name test_something from test_foo.py function = request.function.__name__ # Join all of these to make a unique path for this test function basepath = os.path.join(testfiledir, outputname) path = os.path.join(basepath, function) # Add a sequence number to avoid collisions when tests are # otherwise parameterized if MPI.rank(MPI.comm_world) == 0: _create_tempdir._sequencenumber[path] += 1 sequencenumber = _create_tempdir._sequencenumber[path] sequencenumber = MPI.sum(MPI.comm_world, sequencenumber) else: sequencenumber = MPI.sum(MPI.comm_world, 0) path += "__" + str(sequencenumber) # Delete and re-create directory on root node if MPI.rank(MPI.comm_world) == 0: # First time visiting this basepath, delete the old and create # a new if basepath not in _create_tempdir._basepaths: _create_tempdir._basepaths.add(basepath) if os.path.exists(basepath): shutil.rmtree(basepath) # Make sure we have the base path test_foo_tempdir for # this test_foo.py file if not os.path.exists(basepath): os.mkdir(basepath) # Delete path from old test run if os.path.exists(path): shutil.rmtree(path) # Make sure we have the path for this test execution: # e.g. test_foo_tempdir/test_something__3 if not os.path.exists(path): os.mkdir(path) MPI.barrier(MPI.comm_world) return path
def test_mesh_function_assign_2D_cells(): mesh = UnitSquareMesh(MPI.comm_world, 3, 3) ncells = mesh.num_cells() f = MeshFunction("int", mesh, mesh.topology.dim, 0) for c in range(ncells): f.values[c] = ncells - c g = MeshValueCollection("int", mesh, 2) g.assign(f) assert ncells == len(f.values) assert ncells == g.size() f2 = MeshFunction("int", mesh, g, 0) for c in range(mesh.num_cells()): value = ncells - c assert value == g.get_value(c, 0) assert f2.values[c] == g.get_value(c, 0) h = MeshValueCollection("int", mesh, 2) global_indices = mesh.topology.index_map(2).global_indices(True) ncells_global = mesh.num_entities_global(2) for c in range(mesh.num_cells()): if global_indices[c] in [5, 8, 10]: continue value = ncells_global - global_indices[c] h.set_value(c, int(value)) f3 = MeshFunction("int", mesh, h, 0) values = f3.values values[values > ncells_global] = 0. assert MPI.sum(mesh.mpi_comm(), values.sum() * 1.0) == 140.
def test_UnitSquareMeshDistributed(): """Create mesh of unit square.""" mesh = UnitSquareMesh(MPI.comm_world, 5, 7) assert mesh.num_entities_global(0) == 48 assert mesh.num_entities_global(2) == 70 assert mesh.geometry.dim == 2 assert MPI.sum(mesh.mpi_comm(), mesh.topology.index_map(0).size_local) == 48
def test_UnitCubeMeshDistributed(): """Create mesh of unit cube.""" mesh = UnitCubeMesh(MPI.comm_world, 5, 7, 9) assert mesh.num_entities_global(0) == 480 assert mesh.num_entities_global(3) == 1890 assert mesh.geometry.dim == 3 assert MPI.sum(mesh.mpi_comm(), mesh.topology.index_map(0).size_local) == 480
def test_UnitQuadMesh(): mesh = UnitSquareMesh(MPI.comm_world, 5, 7, CellType.quadrilateral) assert mesh.num_entities_global(0) == 48 assert mesh.num_entities_global(2) == 35 assert mesh.geometry.dim == 2 assert MPI.sum(mesh.mpi_comm(), mesh.topology.index_map(0).size_local) == 48
def test_gmsh_input_quad(order): pygmsh = pytest.importorskip("pygmsh") # Parameterize test if gmsh gets wider support R = 1 res = 0.2 if order == 2 else 0.2 algorithm = 2 if order == 2 else 5 element = "quad{0:d}".format(int((order + 1)**2)) geo = pygmsh.opencascade.Geometry() geo.add_raw_code("Mesh.ElementOrder={0:d};".format(order)) geo.add_ball([0, 0, 0], R, char_length=res) geo.add_raw_code("Recombine Surface {1};") geo.add_raw_code("Mesh.Algorithm = {0:d};".format(algorithm)) msh = pygmsh.generate_mesh(geo, verbose=True, dim=2) if order > 2: # Quads order > 3 have a gmsh specific ordering, and has to be permuted. msh_to_dolfin = np.array([0, 3, 11, 10, 1, 2, 6, 7, 4, 9, 12, 15, 5, 8, 13, 14]) cells = np.zeros(msh.cells_dict[element].shape) for i in range(len(cells)): for j in range(len(msh_to_dolfin)): cells[i, j] = msh.cells_dict[element][i, msh_to_dolfin[j]] else: # XDMF does not support higher order quads cells = permute_cell_ordering(msh.cells_dict[element], permutation_vtk_to_dolfin( CellType.quadrilateral, msh.cells_dict[element].shape[1])) mesh = Mesh(MPI.comm_world, CellType.quadrilateral, msh.points, cells, [], GhostMode.none) surface = assemble_scalar(1 * dx(mesh)) assert MPI.sum(mesh.mpi_comm(), surface) == pytest.approx(4 * np.pi * R * R, rel=1e-5)
def test_UnitHexMesh(): mesh = UnitCubeMesh(MPI.comm_world, 5, 7, 9, CellType.hexahedron) assert mesh.num_entities_global(0) == 480 assert mesh.num_entities_global(3) == 315 assert mesh.geometry.dim == 3 assert MPI.sum(mesh.mpi_comm(), mesh.topology.index_map(0).size_local) == 480
def test_topology_surface(cube): surface_vertex_markers = cube.topology.on_boundary(0) assert surface_vertex_markers n = 3 cube.create_entities(1) cube.create_connectivity(2, 1) surface_edge_markers = cube.topology.on_boundary(1) assert surface_edge_markers surface_facet_markers = cube.topology.on_boundary(2) sf_count = np.count_nonzero(np.array(surface_facet_markers)) assert MPI.sum(cube.mpi_comm(), sf_count) == n * n * 12
def test_third_order_tri(): # *---*---*---* 3--11--10--2 # | \ | | \ | # * * * * 8 7 15 13 # | \ | | \ | # * * * * 9 14 6 12 # | \ | | \ | # *---*---*---* 0--4---5---1 for H in (1.0, 2.0): for Z in (0.0, 0.5): L = 1 points = np.array([ [0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], # 0, 1, 2, 3 [L / 3, 0, 0], [2 * L / 3, 0, 0], # 4, 5 [2 * L / 3, H / 3, 0], [L / 3, 2 * H / 3, 0], # 6, 7 [0, 2 * H / 3, 0], [0, H / 3, 0], # 8, 9 [2 * L / 3, H, Z], [L / 3, H, Z], # 10, 11 [L, H / 3, 0], [L, 2 * H / 3, 0], # 12, 13 [L / 3, H / 3, 0], # 14 [2 * L / 3, 2 * H / 3, 0] ]) # 15 cells = np.array([[0, 1, 3, 4, 5, 6, 7, 8, 9, 14], [1, 2, 3, 12, 13, 10, 11, 7, 6, 15]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] degree = mesh.degree() # Interpolate function V = FunctionSpace(mesh, ("CG", degree)) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) intu = assemble_scalar(u * dx(metadata={"quadrature_degree": 40})) intu = MPI.sum(mesh.mpi_comm(), intu) nodes = [0, 9, 8, 3] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_third_order_quad(L, H, Z): """Test by comparing integration of z+x*y against sympy/scipy integration of a quad element. Z>0 implies curved element. *---------* 3--8--9--2-22-23-17 | | | | | | | 11 14 15 7 26 27 21 | | | | | | | 10 12 13 6 24 25 20 | | | | | *---------* 0--4--5--1-18-19-16 """ points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], # 0 1 2 3 [L / 3, 0, 0], [2 * L / 3, 0, 0], # 4 5 [L, H / 3, 0], [L, 2 * H / 3, 0], # 6 7 [L / 3, H, Z], [2 * L / 3, H, Z], # 8 9 [0, H / 3, 0], [0, 2 * H / 3, 0], # 10 11 [L / 3, H / 3, 0], [2 * L / 3, H / 3, 0], # 12 13 [L / 3, 2 * H / 3, 0], [2 * L / 3, 2 * H / 3, 0], # 14 15 [2 * L, 0, 0], [2 * L, H, Z], # 16 17 [4 * L / 3, 0, 0], [5 * L / 3, 0, 0], # 18 19 [2 * L, H / 3, 0], [2 * L, 2 * H / 3, 0], # 20 21 [4 * L / 3, H, Z], [5 * L / 3, H, Z], # 22 23 [4 * L / 3, H / 3, 0], [5 * L / 3, H / 3, 0], # 24 25 [4 * L / 3, 2 * H / 3, 0], [5 * L / 3, 2 * H / 3, 0]]) # 26 27 # Change to multiple cells when matthews dof-maps work for quads cells = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [1, 16, 17, 2, 18, 19, 20, 21, 22, 23, 6, 7, 24, 25, 26, 27]]) cells = permute_cell_ordering(cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1])) mesh = Mesh(MPI.comm_world, CellType.quadrilateral, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] # Interpolate function V = FunctionSpace(mesh, ("CG", 3)) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) intu = assemble_scalar(u * dx(mesh)) intu = MPI.sum(mesh.mpi_comm(), intu) nodes = [0, 3, 10, 11] ref = sympy_scipy(points, nodes, 2 * L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_fourth_order_tri(): L = 1 # *--*--*--*--* 3-21-20-19--2 # | \ | | \ | # * * * * * 10 9 24 23 18 # | \ | | \ | # * * * * * 11 15 8 22 17 # | \ | | \ | # * * * * * 12 13 14 7 16 # | \ | | \ | # *--*--*--*--* 0--4--5--6--1 for H in (1.0, 2.0): for Z in (0.0, 0.5): points = np.array( [[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], # 0, 1, 2, 3 [L / 4, 0, 0], [L / 2, 0, 0], [3 * L / 4, 0, 0], # 4, 5, 6 [3 / 4 * L, H / 4, Z / 2], [L / 2, H / 2, 0], # 7, 8 [L / 4, 3 * H / 4, 0], [0, 3 * H / 4, 0], # 9, 10 [0, H / 2, 0], [0, H / 4, Z / 2], # 11, 12 [L / 4, H / 4, Z / 2], [L / 2, H / 4, Z / 2], [L / 4, H / 2, 0], # 13, 14, 15 [L, H / 4, Z / 2], [L, H / 2, 0], [L, 3 * H / 4, 0], # 16, 17, 18 [3 * L / 4, H, Z], [L / 2, H, Z], [L / 4, H, Z], # 19, 20, 21 [3 * L / 4, H / 2, 0], [3 * L / 4, 3 * H / 4, 0], # 22, 23 [L / 2, 3 * H / 4, 0]] # 24 ) cells = np.array([[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [1, 2, 3, 16, 17, 18, 19, 20, 21, 9, 8, 7, 22, 23, 24]]) cells = permute_cell_ordering(cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] degree = mesh.degree() # Interpolate function V = FunctionSpace(mesh, ("CG", degree)) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) intu = assemble_scalar(u * dx(metadata={"quadrature_degree": 50})) intu = MPI.sum(mesh.mpi_comm(), intu) nodes = [0, 3, 10, 11, 12] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-4)
def test_second_order_tri(): # Test second order mesh by computing volume of two cells # *-----*-----* 3----6-----2 # | \ | | \ | # | \ | | \ | # * * * 7 8 5 # | \ | | \ | # | \ | | \ | # *-----*-----* 0----4-----1 for H in (1.0, 2.0): for Z in (0.0, 0.5): L = 1 points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], [L / 2, 0, 0], [L, H / 2, 0], [L / 2, H, Z], [0, H / 2, 0], [L / 2, H / 2, 0]]) cells = np.array([[0, 1, 3, 4, 8, 7], [1, 2, 3, 5, 6, 8]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] degree = mesh.degree() # Interpolate function V = FunctionSpace(mesh, ("CG", degree)) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) intu = assemble_scalar( u * dx(mesh, metadata={"quadrature_degree": 20})) intu = MPI.sum(mesh.mpi_comm(), intu) nodes = [0, 3, 7] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_second_order_quad(L, H, Z): """ Test by comparing integration of z+x*y against sympy/scipy integration of a quad element. Z>0 implies curved element. *-----* 3--6--2 | | | | | | 7 8 5 | | | | *-----* 0--4--1 """ points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], [L / 2, 0, 0], [L, H / 2, 0], [L / 2, H, Z], [0, H / 2, 0], [L / 2, H / 2, 0], [2 * L, 0, 0], [2 * L, H, Z]]) cells = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1])) mesh = Mesh(MPI.comm_world, CellType.quadrilateral, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] # Interpolate function V = FunctionSpace(mesh, ("CG", 2)) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) intu = assemble_scalar(u * dx(mesh)) intu = MPI.sum(mesh.mpi_comm(), intu) nodes = [0, 3, 7] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_save_and_read_mesh_value_collection_with_only_one_marked_entity( tempdir): ndiv = 2 filename = os.path.join(tempdir, "mesh_value_collection.h5") mesh = UnitCubeMesh(MPI.comm_world, ndiv, ndiv, ndiv) mvc = MeshValueCollection("size_t", mesh, 3) mesh.create_entities(3) if MPI.rank(mesh.mpi_comm()) == 0: mvc.set_value(0, 1) # write to file with HDF5File(mesh.mpi_comm(), filename, 'w') as f: f.write(mvc, "/mesh_value_collection") # read from file with HDF5File(mesh.mpi_comm(), filename, 'r') as f: mvc = f.read_mvc_size_t(mesh, "/mesh_value_collection") assert MPI.sum(mesh.mpi_comm(), mvc.size()) == 1 if MPI.rank(mesh.mpi_comm()) == 0: assert mvc.get_value(0, 0) == 1
def test_UnitHexMesh_assemble(): mesh = UnitCubeMesh(MPI.comm_world, 6, 7, 5, CellType.hexahedron) vol = assemble_scalar(1 * dx(mesh)) vol = MPI.sum(mesh.mpi_comm(), vol) assert (vol == pytest.approx(1, rel=1e-9))
# "Exact" solution expression def solution(values, x): values[:, 0] = A * np.cos(k0 * x[:, 0]) * np.cos(k0 * x[:, 1]) # Function space for exact solution - need it to be higher than deg V_exact = FunctionSpace(mesh, ("Lagrange", deg + 3)) u_exact = Function(V_exact) u_exact.interpolate(lambda x: A * np.cos(k0 * x[0]) * np.cos(k0 * x[1])) # best approximation from V # u_BA = project(u_exact, V) # H1 errors diff = u - u_exact # diff_BA = u_BA - u_exact H1_diff = MPI.sum(mesh.mpi_comm(), assemble_scalar(inner(grad(diff), grad(diff)) * dx)) # H1_BA = MPI.sum(mesh.mpi_comm(), assemble_scalar(inner(grad(diff_BA), grad(diff_BA)) * dx)) H1_exact = MPI.sum(mesh.mpi_comm(), assemble_scalar(inner(grad(u_exact), grad(u_exact)) * dx)) # print("Relative H1 error of best approximation:", abs(np.sqrt(H1_BA) / np.sqrt(H1_exact))) print("Relative H1 error of FEM solution:", abs(np.sqrt(H1_diff) / np.sqrt(H1_exact))) # L2 errors L2_diff = MPI.sum(mesh.mpi_comm(), assemble_scalar(inner(diff, diff) * dx)) # L2_BA = MPI.sum(mesh.mpi_comm(), assemble_scalar(inner(diff_BA, diff_BA) * dx)) L2_exact = MPI.sum(mesh.mpi_comm(), assemble_scalar(inner(u_exact, u_exact) * dx)) # print("Relative L2 error of best approximation:", abs(np.sqrt(L2_BA) / np.sqrt(L2_exact))) print("Relative L2 error of FEM solution:", abs(np.sqrt(L2_diff) / np.sqrt(L2_exact)))
def test_GetCells(): """Get cells of mesh""" mesh = UnitSquareMesh(MPI.comm_world, 5, 5) assert MPI.sum(mesh.mpi_comm(), len(mesh.cells())) == 50
def test_manufactured_poisson_dg(degree, filename, datadir): """ Manufactured Poisson problem, solving u = x[component]**n, where n is the degree of the Lagrange function space. """ with XDMFFile(MPI.comm_world, os.path.join(datadir, filename)) as xdmf: if MPI.size(MPI.comm_world) == 1: # Serial mesh = xdmf.read_mesh(GhostMode.none) else: mesh = xdmf.read_mesh(GhostMode.shared_facet) V = FunctionSpace(mesh, ("DG", degree)) u, v = TrialFunction(V), TestFunction(V) # Exact solution x = SpatialCoordinate(mesh) u_exact = x[1] ** degree # Coefficient k = Function(V) k.vector.set(2.0) k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) # Source term f = - div(k * grad(u_exact)) # Mesh normals and element size n = FacetNormal(mesh) h = CellDiameter(mesh) h_avg = (h("+") + h("-")) / 2.0 # Penalty parameter alpha = 32 dx_ = dx(metadata={"quadrature_degree": -1}) ds_ = ds(metadata={"quadrature_degree": -1}) dS_ = dS(metadata={"quadrature_degree": -1}) a = inner(k * grad(u), grad(v)) * dx_ \ - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \ - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \ + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \ - inner(k * grad(u), v * n) * ds_ \ - inner(u * n, k * grad(v)) * ds_ \ + (alpha / h) * inner(k * u, v) * ds_ L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \ + (alpha / h) * inner(k * u_exact, v) * ds_ for integral in a.integrals(): integral.metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a) for integral in L.integrals(): integral.metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L) b = assemble_vector(L) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) A = assemble_matrix(a, []) A.assemble() # Create LU linear solver solver = PETSc.KSP().create(MPI.comm_world) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = Function(V) solver.solve(b, uh.vector) uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) error = assemble_scalar((u_exact - uh)**2 * dx) error = MPI.sum(mesh.mpi_comm(), error) assert np.absolute(error) < 1.0e-14
def test_volume_cells(mesh): num_cells = mesh.num_entities(mesh.topology.dim) v = cpp.mesh.volume_entities(mesh, range(num_cells), mesh.topology.dim) v = MPI.sum(mesh.mpi_comm(), v.sum()) assert v == pytest.approx(1.0, rel=1e-9)
def test_diff_then_integrate(): # Define 1D geometry n = 21 mesh = UnitIntervalMesh(MPI.comm_world, n) # Shift and scale mesh x0, x1 = 1.5, 3.14 mesh.coordinates()[:] *= (x1 - x0) mesh.coordinates()[:] += x0 x = SpatialCoordinate(mesh)[0] xs = 0.1 + 0.8 * x / x1 # scaled to be within [0.1,0.9] # Define list of expressions to test, and configure # accuracies these expressions are known to pass with. # The reason some functions are less accurately integrated is # likely that the default choice of quadrature rule is not perfect F_list = [] def reg(exprs, acc=10): for expr in exprs: F_list.append((expr, acc)) # FIXME: 0*dx and 1*dx fails in the ufl-ffcx-jit framework somewhere # reg([Constant(0.0, cell=cell)]) # reg([Constant(1.0, cell=cell)]) monomial_list = [x**q for q in range(2, 6)] reg(monomial_list) reg([2.3 * p + 4.5 * q for p in monomial_list for q in monomial_list]) reg([x**x]) reg([x**(x**2)], 8) reg([x**(x**3)], 6) reg([x**(x**4)], 2) # Special functions: reg([atan(xs)], 8) reg([sin(x), cos(x), exp(x)], 5) reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3) reg([asin(xs), acos(xs)], 1) reg([tan(xs)], 7) try: import scipy except ImportError: scipy = None if hasattr(math, 'erf') or scipy is not None: reg([erf(xs)]) else: print("Warning: skipping test of erf, old python version and no scipy.") # if 0: # print("Warning: skipping tests of bessel functions, doesn't build on all platforms.") # elif scipy is None: # print("Warning: skipping tests of bessel functions, missing scipy.") # else: # for nu in (0, 1, 2): # # Many of these are possibly more accurately integrated, # # but 4 covers all and is sufficient for this test # reg([bessel_J(nu, xs), bessel_Y(nu, xs), bessel_I(nu, xs), bessel_K(nu, xs)], 4) # To handle tensor algebra, make an x dependent input tensor # xx and square all expressions def reg2(exprs, acc=10): for expr in exprs: F_list.append((inner(expr, expr), acc)) xx = as_matrix([[2 * x**2, 3 * x**3], [11 * x**5, 7 * x**4]]) x3v = as_vector([3 * x**2, 5 * x**3, 7 * x**4]) cc = as_matrix([[2, 3], [4, 5]]) reg2([xx]) reg2([x3v]) reg2([cross(3 * x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))]) reg2([xx.T]) reg2([tr(xx)]) reg2([det(xx)]) reg2([dot(xx, 0.1 * xx)]) reg2([outer(xx, xx.T)]) reg2([dev(xx)]) reg2([sym(xx)]) reg2([skew(xx)]) reg2([elem_mult(7 * xx, cc)]) reg2([elem_div(7 * xx, xx + cc)]) reg2([elem_pow(1e-3 * xx, 1e-3 * cc)]) reg2([elem_pow(1e-3 * cc, 1e-3 * xx)]) reg2([elem_op(lambda z: sin(z) + 2, 0.03 * xx)], 2) # pretty inaccurate... # FIXME: Add tests for all UFL operators: # These cause discontinuities and may be harder to test in the # above fashion: # 'inv', 'cofac', # 'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not', # 'conditional', 'sign', # 'jump', 'avg', # 'LiftingFunction', 'LiftingOperator', # FIXME: Test other derivatives: (but algorithms for operator # derivatives are the same!): # 'variable', 'diff', # 'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative', # Run through all operators defined above and compare integrals debug = 0 for F, acc in F_list: # Apply UFL differentiation f = diff(F, SpatialCoordinate(mesh))[..., 0] if debug: print(F) print(x) print(f) # Apply integration with DOLFINX # (also passes through form compilation and jit) M = f * dx f_integral = assemble_scalar(M) # noqa f_integral = MPI.sum(mesh.mpi_comm(), f_integral) # Compute integral of f manually from anti-derivative F # (passes through pybind11 interface and uses UFL evaluation) F_diff = F((x1,)) - F((x0,)) # Compare results. Using custom relative delta instead # of decimal digits here because some numbers are >> 1. delta = min(abs(f_integral), abs(F_diff)) * 10**-acc assert f_integral - F_diff <= delta
def test_fourth_order_quad(L, H, Z): """Test by comparing integration of z+x*y against sympy/scipy integration of a quad element. Z>0 implies curved element. *---------* 20-21-22-23-24-41--42--43--44 | | | | | | | 15 16 17 18 19 37 38 39 40 | | | | | | | 10 11 12 13 14 33 34 35 36 | | | | | | | 5 6 7 8 9 29 30 31 32 | | | | | *---------* 0--1--2--3--4--25--26--27--28 """ points = np.array([ [0, 0, 0], [L / 4, 0, 0], [L / 2, 0, 0], # 0 1 2 [3 * L / 4, 0, 0], [L, 0, 0], # 3 4 [0, H / 4, -Z / 3], [L / 4, H / 4, -Z / 3], [L / 2, H / 4, -Z / 3], # 5 6 7 [3 * L / 4, H / 4, -Z / 3], [L, H / 4, -Z / 3], # 8 9 [0, H / 2, 0], [L / 4, H / 2, 0], [L / 2, H / 2, 0], # 10 11 12 [3 * L / 4, H / 2, 0], [L, H / 2, 0], # 13 14 [0, (3 / 4) * H, 0], [L / 4, (3 / 4) * H, 0], # 15 16 [L / 2, (3 / 4) * H, 0], [3 * L / 4, (3 / 4) * H, 0], # 17 18 [L, (3 / 4) * H, 0], [0, H, Z], [L / 4, H, Z], # 19 20 21 [L / 2, H, Z], [3 * L / 4, H, Z], [L, H, Z], # 22 23 24 [(5 / 4) * L, 0, 0], [(6 / 4) * L, 0, 0], # 25 26 [(7 / 4) * L, 0, 0], [2 * L, 0, 0], # 27 28 [(5 / 4) * L, H / 4, -Z / 3], [(6 / 4) * L, H / 4, -Z / 3], # 29 30 [(7 / 4) * L, H / 4, -Z / 3], [2 * L, H / 4, -Z / 3], # 31 32 [(5 / 4) * L, H / 2, 0], [(6 / 4) * L, H / 2, 0], # 33 34 [(7 / 4) * L, H / 2, 0], [2 * L, H / 2, 0], # 35 36 [(5 / 4) * L, 3 / 4 * H, 0], # 37 [(6 / 4) * L, 3 / 4 * H, 0], # 38 [(7 / 4) * L, 3 / 4 * H, 0], [2 * L, 3 / 4 * H, 0], # 39 40 [(5 / 4) * L, H, Z], [(6 / 4) * L, H, Z], # 41 42 [(7 / 4) * L, H, Z], [2 * L, H, Z] ]) # 43 44 # VTK ordering cells = np.array([[ 0, 4, 24, 20, 1, 2, 3, 9, 14, 19, 21, 22, 23, 5, 10, 15, 6, 7, 8, 11, 12, 13, 16, 17, 18 ], [ 4, 28, 44, 24, 25, 26, 27, 32, 36, 40, 41, 42, 43, 9, 14, 19, 29, 30, 31, 33, 34, 35, 37, 38, 39 ]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1])) mesh = Mesh(MPI.comm_world, CellType.quadrilateral, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] V = FunctionSpace(mesh, ("CG", 4)) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) intu = assemble_scalar(u * dx(mesh)) intu = MPI.sum(mesh.mpi_comm(), intu) nodes = [0, 5, 10, 15, 20] ref = sympy_scipy(points, nodes, 2 * L, H) assert ref == pytest.approx(intu, rel=1e-5)
def test_xdmf_input_tri(datadir): with XDMFFile(MPI.comm_world, os.path.join(datadir, "mesh.xdmf")) as xdmf: mesh = xdmf.read_mesh(GhostMode.none) surface = assemble_scalar(1 * dx(mesh)) assert MPI.sum(mesh.mpi_comm(), surface) == pytest.approx(4 * np.pi, rel=1e-4)
def test_manufactured_poisson(degree, filename, datadir): """ Manufactured Poisson problem, solving u = x[1]**p, where p is the degree of the Lagrange function space. """ with XDMFFile(MPI.comm_world, os.path.join(datadir, filename)) as xdmf: mesh = xdmf.read_mesh(GhostMode.none) V = FunctionSpace(mesh, ("Lagrange", degree)) u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v)) * dx # Get quadrature degree for bilinear form integrand (ignores effect # of non-affine map) a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1}) a.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a) # Source term x = SpatialCoordinate(mesh) u_exact = x[1]**degree f = -div(grad(u_exact)) # Set quadrature degree for linear form integrand (ignores effect of # non-affine map) L = inner(f, v) * dx(metadata={"quadrature_degree": -1}) L.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L) t0 = time.time() L = fem.Form(L) t1 = time.time() print("Linear form compile time:", t1 - t0) u_bc = Function(V) u_bc.interpolate(lambda x: x[1]**degree) # Create Dirichlet boundary condition mesh.create_connectivity_all() facetdim = mesh.topology.dim - 1 bndry_facets = np.where( np.array(mesh.topology.on_boundary(facetdim)) == 1)[0] bdofs = locate_dofs_topological(V, facetdim, bndry_facets) assert (len(bdofs) < V.dim()) bc = DirichletBC(u_bc, bdofs) t0 = time.time() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) t1 = time.time() print("Vector assembly time:", t1 - t0) t0 = time.time() a = fem.Form(a) t1 = time.time() print("Bilinear form compile time:", t1 - t0) t0 = time.time() A = assemble_matrix(a, [bc]) A.assemble() t1 = time.time() print("Matrix assembly time:", t1 - t0) # Create LU linear solver solver = PETSc.KSP().create(MPI.comm_world) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve t0 = time.time() uh = Function(V) solver.solve(b, uh.vector) uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) t1 = time.time() print("Linear solver time:", t1 - t0) M = (u_exact - uh)**2 * dx t0 = time.time() M = fem.Form(M) t1 = time.time() print("Error functional compile time:", t1 - t0) t0 = time.time() error = assemble_scalar(M) error = MPI.sum(mesh.mpi_comm(), error) t1 = time.time() print("Error assembly time:", t1 - t0) assert np.absolute(error) < 1.0e-14
def test_nth_order_triangle(order): num_nodes = (order + 1) * (order + 2) / 2 cells = np.array([range(int(num_nodes))]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) if order == 1: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000]]) elif order == 2: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.50000, 0.50000, -0.25000], [0.00000, 0.50000, -0.25000]]) elif order == 3: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.33333, 0.00000, 0.00000], [0.66667, 0.00000, 0.00000], [0.66667, 0.33333, -0.11111], [0.33333, 0.66667, 0.11111], [0.00000, 0.66667, 0.11111], [0.00000, 0.33333, -0.11111], [0.33333, 0.33333, -0.11111]]) elif order == 4: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.25000, 0.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.75000, 0.00000, 0.00000], [0.75000, 0.25000, -0.06250], [0.50000, 0.50000, 0.06250], [0.25000, 0.75000, -0.06250], [0.00000, 0.75000, -0.06250], [0.00000, 0.50000, 0.06250], [0.00000, 0.25000, -0.06250], [0.25000, 0.25000, -0.06250], [0.50000, 0.25000, -0.06250], [0.25000, 0.50000, 0.06250]]) elif order == 5: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.20000, 0.00000, 0.00000], [0.40000, 0.00000, 0.00000], [0.60000, 0.00000, 0.00000], [0.80000, 0.00000, 0.00000], [0.80000, 0.20000, -0.04000], [0.60000, 0.40000, 0.04000], [0.40000, 0.60000, -0.04000], [0.20000, 0.80000, 0.04000], [0.00000, 0.80000, 0.04000], [0.00000, 0.60000, -0.04000], [0.00000, 0.40000, 0.04000], [0.00000, 0.20000, -0.04000], [0.20000, 0.20000, -0.04000], [0.60000, 0.20000, -0.04000], [0.20000, 0.60000, -0.04000], [0.40000, 0.20000, -0.04000], [0.40000, 0.40000, 0.04000], [0.20000, 0.40000, 0.04000]]) elif order == 6: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.16667, 0.00000, 0.00000], [0.33333, 0.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.66667, 0.00000, 0.00000], [0.83333, 0.00000, 0.00000], [0.83333, 0.16667, -0.00463], [0.66667, 0.33333, 0.00463], [0.50000, 0.50000, -0.00463], [0.33333, 0.66667, 0.00463], [0.16667, 0.83333, -0.00463], [0.00000, 0.83333, -0.00463], [0.00000, 0.66667, 0.00463], [0.00000, 0.50000, -0.00463], [0.00000, 0.33333, 0.00463], [0.00000, 0.16667, -0.00463], [0.16667, 0.16667, -0.00463], [0.66667, 0.16667, -0.00463], [0.16667, 0.66667, 0.00463], [0.33333, 0.16667, -0.00463], [0.50000, 0.16667, -0.00463], [0.50000, 0.33333, 0.00463], [0.33333, 0.50000, -0.00463], [0.16667, 0.50000, -0.00463], [0.16667, 0.33333, 0.00463], [0.33333, 0.33333, 0.00463]]) elif order == 7: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.14286, 0.00000, 0.00000], [0.28571, 0.00000, 0.00000], [0.42857, 0.00000, 0.00000], [0.57143, 0.00000, 0.00000], [0.71429, 0.00000, 0.00000], [0.85714, 0.00000, 0.00000], [0.85714, 0.14286, -0.02041], [0.71429, 0.28571, 0.02041], [0.57143, 0.42857, -0.02041], [0.42857, 0.57143, 0.02041], [0.28571, 0.71429, -0.02041], [0.14286, 0.85714, 0.02041], [0.00000, 0.85714, 0.02041], [0.00000, 0.71429, -0.02041], [0.00000, 0.57143, 0.02041], [0.00000, 0.42857, -0.02041], [0.00000, 0.28571, 0.02041], [0.00000, 0.14286, -0.02041], [0.14286, 0.14286, -0.02041], [0.71429, 0.14286, -0.02041], [0.14286, 0.71429, -0.02041], [0.28571, 0.14286, -0.02041], [0.42857, 0.14286, -0.02041], [0.57143, 0.14286, -0.02041], [0.57143, 0.28571, 0.02041], [0.42857, 0.42857, -0.02041], [0.28571, 0.57143, 0.02041], [0.14286, 0.57143, 0.02041], [0.14286, 0.42857, -0.02041], [0.14286, 0.28571, 0.02041], [0.28571, 0.28571, 0.02041], [0.42857, 0.28571, 0.02041], [0.28571, 0.42857, -0.02041]]) # Higher order tests are too slow elif order == 8: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.12500, 0.00000, 0.00000], [0.25000, 0.00000, 0.00000], [0.37500, 0.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.62500, 0.00000, 0.00000], [0.75000, 0.00000, 0.00000], [0.87500, 0.00000, 0.00000], [0.87500, 0.12500, -0.00195], [0.75000, 0.25000, 0.00195], [0.62500, 0.37500, -0.00195], [0.50000, 0.50000, 0.00195], [0.37500, 0.62500, -0.00195], [0.25000, 0.75000, 0.00195], [0.12500, 0.87500, -0.00195], [0.00000, 0.87500, -0.00195], [0.00000, 0.75000, 0.00195], [0.00000, 0.62500, -0.00195], [0.00000, 0.50000, 0.00195], [0.00000, 0.37500, -0.00195], [0.00000, 0.25000, 0.00195], [0.00000, 0.12500, -0.00195], [0.12500, 0.12500, -0.00195], [0.75000, 0.12500, -0.00195], [0.12500, 0.75000, 0.00195], [0.25000, 0.12500, -0.00195], [0.37500, 0.12500, -0.00195], [0.50000, 0.12500, -0.00195], [0.62500, 0.12500, -0.00195], [0.62500, 0.25000, 0.00195], [0.50000, 0.37500, -0.00195], [0.37500, 0.50000, 0.00195], [0.25000, 0.62500, -0.00195], [0.12500, 0.62500, -0.00195], [0.12500, 0.50000, 0.00195], [0.12500, 0.37500, -0.00195], [0.12500, 0.25000, 0.00195], [0.25000, 0.25000, 0.00195], [0.50000, 0.25000, 0.00195], [0.25000, 0.50000, 0.00195], [0.37500, 0.25000, 0.00195], [0.37500, 0.37500, -0.00195], [0.25000, 0.37500, -0.00195]]) mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [], GhostMode.none) # Find nodes corresponding to y axis nodes = [] for j in range(points.shape[0]): if np.isclose(points[j][0], 0): nodes.append(j) def e2(x): return x[2] + x[0] * x[1] # For solution to be in functionspace V = FunctionSpace(mesh, ("CG", max(2, order))) u = Function(V) cmap = fem.create_coordinate_map(mesh.ufl_domain()) mesh.geometry.coord_mapping = cmap u.interpolate(e2) quad_order = 30 intu = assemble_scalar(u * dx(metadata={"quadrature_degree": quad_order})) intu = MPI.sum(mesh.mpi_comm(), intu) ref = scipy_one_cell(points, nodes) assert ref == pytest.approx(intu, rel=3e-3)