def F(self, x: PETSc.Vec, F: PETSc.Vec):
        with F.localForm() as F_local:
            F_local.set(0.0)
        dolfinx_mpc.assemble_vector(self._L, self.mpc, b=F)

        # Apply boundary condition
        dolfinx_mpc.apply_lifting(F, [self._a],
                                  bcs=[self.bcs],
                                  constraint=self.mpc,
                                  x0=[x],
                                  scale=-1.0)
        F.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        dolfinx.fem.petsc.set_bc(F, self.bcs, x, -1.0)
Esempio n. 2
0
def test_vector_possion(Nx, Ny, slave_space, master_space,
                        get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny)

    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    def boundary(x):
        return np.isclose(x.T, [0, 0, 0]).all(axis=1)

    # Define boundary conditions (HAS TO BE NON-MASTER NODES)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bdofsV = fem.locate_dofs_geometrical(V, boundary)
    bc = fem.dirichletbc(u_bc, bdofsV)
    bcs = [bc]

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.as_vector((-5 * x[1], 7 * x[0]))

    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, slave_space, master_space)
    mpc.finalize()

    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = dolfinx_mpc.assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)

    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Generate reference matrices for unconstrained problem
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Esempio n. 3
0
def test_surface_integrals(get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers

    N = 4
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Fixed Dirichlet BC on the left wall
    def left_wall(x):
        return np.isclose(x[0], np.finfo(float).eps)

    fdim = mesh.topology.dim - 1
    left_facets = locate_entities_boundary(mesh, fdim, left_wall)
    bc_dofs = fem.locate_dofs_topological(V, 1, left_facets)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)
    bc = fem.dirichletbc(u_bc, bc_dofs)
    bcs = [bc]

    # Traction on top of domain
    def top(x):
        return np.isclose(x[1], 1)
    top_facets = locate_entities_boundary(mesh, 1, top)
    arg_sort = np.argsort(top_facets)
    mt = meshtags(mesh, fdim, top_facets[arg_sort], np.full(len(top_facets), 3, dtype=np.int32))

    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    g = fem.Constant(mesh, PETSc.ScalarType((0, -9.81e2)))

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * ufl.sym(ufl.grad(v))
                + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType((0, 0))), v) * ufl.dx\
        + ufl.inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Setup multipointconstraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()
    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.8}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix old"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Write solution to file
    # u_h = dolfinx.Function(mpc.function_space)
    # u_h.vector.setArray(uh.array)
    # u_h.name = "u_mpc"
    # outfile = dolfinx.io.XDMFFile(MPI.COMM_WORLD, "output/uh.xdmf", "w")
    # outfile.write_mesh(mesh)
    # outfile.write_function(u_h)
    # outfile.close()

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Esempio n. 4
0
def test_cube_contact(generate_hex_boxes, nonslip,
                      get_assemblers):  # noqa: F811
    assemble_matrix, assemble_vector = get_assemblers
    comm = MPI.COMM_WORLD
    root = 0
    # Generate mesh
    mesh_data = generate_hex_boxes
    mesh, mt = mesh_data
    fdim = mesh.topology.dim - 1
    # Create functionspaces
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Helper for orienting traction

    # Bottom boundary is fixed in all directions
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))
    bc_bottom = fem.dirichletbc(u_bc, bottom_dofs)

    g_vec = [0, 0, -4.25e-1]
    if not nonslip:
        # Helper for orienting traction
        r_matrix = dolfinx_mpc.utils.rotation_matrix(
            [1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])

    # Top boundary has a given deformation normal to the interface
    def top_v(x):
        values = np.empty((3, x.shape[1]))
        values[0] = g_vec[0]
        values[1] = g_vec[1]
        values[2] = g_vec[2]
        return values

    u_top = fem.Function(V)
    u_top.interpolate(top_v)

    top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = fem.dirichletbc(u_top, top_dofs)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * ufl.sym(ufl.grad(v)) +
                lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType(
        (0, 0, 0))), v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create LU solver
    solver = PETSc.KSP().create(comm)
    solver.setType("preonly")
    solver.setTolerances(rtol=1.0e-14)
    solver.getPC().setType("lu")

    # Create MPC contact condition and assemble matrices
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    if nonslip:
        with Timer("~Contact: Create non-elastic constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer("~Contact: Create contact constraint"):
            nh = dolfinx_mpc.utils.create_normal_approximation(V, mt, 4)
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    mpc.finalize()

    with Timer("~TEST: Assemble bilinear form"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    with Timer("~MPC: Solve"):
        solver.setOperators(A)
        uh = b.copy()
        uh.set(0)
        solver.solve(b, uh)

    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Write solution to file
    # u_h = fem.Function(mpc.function_space)
    # u_h.vector.setArray(uh.array)
    # u_h.x.scatter_forward()
    # u_h.name = "u_{0:.2f}".format(theta)
    # import dolfinx.io as io
    # with io.XDMFFile(comm, "output/rotated_cube3D.xdmf", "w") as outfile:
    #     outfile.write_mesh(mesh)
    #     outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    dolfinx_mpc.utils.log_info(
        "Solving reference problem with global matrix (using numpy)")

    with Timer("~TEST: Assemble bilinear form (unconstrained)"):
        A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
        A_org.assemble()
        L_org = fem.petsc.assemble_vector(linear_form)
        fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                          mode=PETSc.ScatterMode.REVERSE)
        fem.petsc.set_bc(L_org, bcs)

    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
def bench_elasticity_edge(tetra: bool = True, r_lvl: int = 0, out_hdf5=None, xdmf: bool = False,
                          boomeramg: bool = False, kspview: bool = False, degree: int = 1, info: bool = False):
    N = 3
    for i in range(r_lvl):
        N *= 2
    ct = CellType.tetrahedron if tetra else CellType.hexahedron
    mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, ct)
    # Get number of unknowns on each edge

    V = VectorFunctionSpace(mesh, ("Lagrange", int(degree)))

    # Generate Dirichlet BC (Fixed)
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    def boundaries(x):
        return np.isclose(x[0], np.finfo(float).eps)
    fdim = mesh.topology.dim - 1
    facets = locate_entities_boundary(mesh, fdim, boundaries)
    topological_dofs = locate_dofs_topological(V, fdim, facets)
    bc = dirichletbc(u_bc, topological_dofs)
    bcs = [bc]

    def PeriodicBoundary(x):
        return np.logical_and(np.isclose(x[0], 1), np.isclose(x[2], 0))

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = x[0]
        out_x[1] = x[1]
        out_x[2] = x[2] + 1
        return out_x
    with Timer("~Elasticity: Initialize MPC"):
        edim = mesh.topology.dim - 2
        edges = locate_entities_boundary(mesh, edim, PeriodicBoundary)
        arg_sort = np.argsort(edges)
        periodic_mt = meshtags(mesh, edim, edges[arg_sort], np.full(len(edges), 2, dtype=np.int32))

        mpc = MultiPointConstraint(V)
        mpc.create_periodic_constraint_topological(V, periodic_mt, 2, periodic_relation, bcs, scale=0.5)
        mpc.finalize()

    # Create traction meshtag

    def traction_boundary(x):
        return np.isclose(x[0], 1)
    t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
    facet_values = np.ones(len(t_facets), dtype=np.int32)
    arg_sort = np.argsort(t_facets)
    mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values)

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.1
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))
    g = Constant(mesh, PETSc.ScalarType((0, 0, -1e2)))
    x = SpatialCoordinate(mesh)
    f = Constant(mesh, PETSc.ScalarType(1e3)) * as_vector((0, -(x[2] - 0.5)**2, (x[1] - 0.5)**2))

    # Stress computation
    def epsilon(v):
        return sym(grad(v))

    def sigma(v):
        return (2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx

    # Setup MPC system
    if info:
        log_info(f"Run {r_lvl}: Assembling matrix and vector")
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer("~Elasticity: Assemble LHS and RHS"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
        b = assemble_vector(linear_form, mpc)

    # Create nullspace for elasticity problem and assign to matrix
    null_space = rigid_motions_nullspace(mpc.function_space)
    A.setNearNullSpace(null_space)

    # Apply boundary conditions
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)

    opts = PETSc.Options()
    if boomeramg:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-5
        opts["pc_type"] = "hypre"
        opts['pc_hypre_type'] = 'boomeramg'
        opts["pc_hypre_boomeramg_max_iter"] = 1
        opts["pc_hypre_boomeramg_cycle_type"] = "v"
        # opts["pc_hypre_boomeramg_print_statistics"] = 1
    else:
        opts["ksp_rtol"] = 1.0e-8
        opts["pc_type"] = "gamg"
        opts["pc_gamg_type"] = "agg"
        opts["pc_gamg_coarse_eq_limit"] = 1000
        opts["pc_gamg_sym_graph"] = True
        opts["mg_levels_ksp_type"] = "chebyshev"
        opts["mg_levels_pc_type"] = "jacobi"
        opts["mg_levels_esteig_ksp_type"] = "cg"
        opts["matptap_via"] = "scalable"
        opts["pc_gamg_square_graph"] = 2
        opts["pc_gamg_threshold"] = 0.02
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Setup PETSc solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setFromOptions()

    if info:
        log_info(f"Run {r_lvl}: Solving")

    with Timer("~Elasticity: Solve problem") as timer:
        solver.setOperators(A)
        uh = b.copy()
        uh.set(0)
        solver.solve(b, uh)
        uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        mpc.backsubstitution(uh)
        solver_time = timer.elapsed()
    if kspview:
        solver.view()

    mem = sum(MPI.COMM_WORLD.allgather(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
    it = solver.getIterationNumber()

    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if out_hdf5 is not None:
        d_set = out_hdf5.get("its")
        d_set[r_lvl] = it
        d_set = out_hdf5.get("num_dofs")
        d_set[r_lvl] = num_dofs
        d_set = out_hdf5.get("num_slaves")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = mpc.num_local_slaves
        d_set = out_hdf5.get("solve_time")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
    if info:
        log_info(f"Lvl: {r_lvl}, Its: {it}, max Mem: {mem}, dim(V): {num_dofs}")

    if xdmf:
        # Write solution to file
        u_h = Function(mpc.function_space)
        u_h.vector.setArray(uh.array)
        u_h.name = "u_mpc"
        fname = f"results/bench_elasticity_edge_{r_lvl}.xdmf"
        with XDMFFile(MPI.COMM_WORLD, fname, "w") as outfile:
            outfile.write_mesh(mesh)
            outfile.write_function(u_h)
Esempio n. 6
0
def test_lifting(get_assemblers):  # noqa: F811
    """
    Test MPC lifting operation on a single cell
    """
    assemble_matrix, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 1, 1, CellType.quadrilateral)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = x[1] * ufl.sin(2 * ufl.pi * x[0])
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx

    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create Dirichlet boundary condition
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(2.3)

    def dirichletboundary(x):
        return np.isclose(x[0], 1)

    mesh.topology.create_connectivity(2, 1)
    geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
    bc = fem.dirichletbc(u_bc, geometrical_dofs)
    bcs = [bc]

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs=bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    # Create multipoint constraint

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([0, 0]): {l2b([0, 1]): 1}}

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    b = assemble_vector(linear_form, mpc)
    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    fem.petsc.set_bc(b, bcs)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)
    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    V_mpc = mpc.function_space
    u_out = fem.Function(V_mpc)
    u_out.vector.array[:] = uh.array

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):

        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)
        # constants = dolfinx_mpc.utils.gather_contants(mpc, root=root)
        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ (L_np)  # - constants)
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vecto
            uh_numpy = K @ (d)  # + constants)
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Esempio n. 7
0
def demo_stacked_cubes(outfile: XDMFFile, theta: float, gmsh: bool = False, ct: CellType = CellType.tetrahedron,
                       compare: bool = True, res: float = 0.1, noslip: bool = False):
    celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
    type_ext = "no_slip" if noslip else "slip"
    mesh_ext = "_gmsh_" if gmsh else "_"
    log_info(f"Run theta:{theta:.2f}, Cell: {celltype}, GMSH {gmsh}, Noslip: {noslip}")

    # Read in mesh
    if gmsh:
        mesh, mt = gmsh_3D_stacked(celltype, theta, res)
        tdim = mesh.topology.dim
        fdim = tdim - 1
        mesh.topology.create_connectivity(tdim, tdim)
        mesh.topology.create_connectivity(fdim, tdim)
    else:
        mesh_3D_dolfin(theta, ct, celltype, res)
        MPI.COMM_WORLD.barrier()
        with XDMFFile(MPI.COMM_WORLD, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf:
            mesh = xdmf.read_mesh(name="mesh")
            tdim = mesh.topology.dim
            fdim = tdim - 1
            mesh.topology.create_connectivity(tdim, tdim)
            mesh.topology.create_connectivity(fdim, tdim)
            mt = xdmf.read_meshtags(mesh, "facet_tags")
    mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext}{mesh_ext}"

    # Create functionspaces
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Define boundary conditions

    # Bottom boundary is fixed in all directions
    bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))  # type: ignore
    u_bc = np.array((0, ) * mesh.geometry.dim, dtype=PETSc.ScalarType)
    bc_bottom = fem.dirichletbc(u_bc, bottom_dofs, V)

    g_vec = np.array([0, 0, -4.25e-1], dtype=PETSc.ScalarType)
    if not noslip:
        # Helper for orienting traction
        r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, g_vec)

    top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))  # type: ignore
    bc_top = fem.dirichletbc(g_vec, top_dofs, V)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    # NOTE: Traction deactivated until we have a way of fixing nullspace
    # g = fem.Constant(mesh, PETSc.ScalarType(g_vec))
    # ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    rhs = inner(fem.Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx
    # + inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    mpc = MultiPointConstraint(V)
    if noslip:
        with Timer("~~Contact: Create non-elastic constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer("~Contact: Create contact constraint"):
            nh = create_normal_approximation(V, mt, 4)
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    with Timer("~~Contact: Add data and finialize MPC"):
        mpc.finalize()

    # Create null-space
    null_space = rigid_motions_nullspace(mpc.function_space)
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    with Timer(f"~~Contact: Assemble matrix ({num_dofs})"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer(f"~~Contact: Assemble vector ({num_dofs})"):
        b = assemble_vector(linear_form, mpc)

    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    # Solve Linear problem
    opts = PETSc.Options()
    opts["ksp_rtol"] = 1.0e-8
    opts["pc_type"] = "gamg"
    opts["pc_gamg_type"] = "agg"
    opts["pc_gamg_coarse_eq_limit"] = 1000
    opts["pc_gamg_sym_graph"] = True
    opts["mg_levels_ksp_type"] = "chebyshev"
    opts["mg_levels_pc_type"] = "jacobi"
    opts["mg_levels_esteig_ksp_type"] = "cg"
    opts["matptap_via"] = "scalable"
    # opts["pc_gamg_square_graph"] = 2
    # opts["pc_gamg_threshold"] = 1e-2
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Create functionspace and build near nullspace
    A.setNearNullSpace(null_space)
    solver = PETSc.KSP().create(mesh.comm)
    solver.setOperators(A)
    solver.setFromOptions()

    u_h = fem.Function(mpc.function_space)
    with Timer("~~Contact: Solve"):
        solver.solve(b, u_h.vector)
        u_h.x.scatter_forward()
    with Timer("~~Contact: Backsubstitution"):
        mpc.backsubstitution(u_h.vector)

    it = solver.getIterationNumber()
    unorm = u_h.vector.norm()
    num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
    if mesh.comm.rank == 0:
        num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
        print(f"Number of dofs: {num_dofs}")
        print(f"Number of slaves: {num_slaves}")
        print(f"Number of iterations: {it}")
        print(f"Norm of u {unorm:.5e}")

    # Write solution to file
    u_h.name = f"u_{celltype}_{theta:.2f}{mesh_ext}{type_ext}".format(celltype, theta, type_ext, mesh_ext)
    outfile.write_mesh(mesh)
    outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    if not compare:
        return

    log_info("Solving reference problem with global matrix (using scipy)")
    with Timer("~~Contact: Reference problem"):
        A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
        A_org.assemble()
        L_org = fem.petsc.assemble_vector(linear_form)
        fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
        fem.petsc.set_bc(L_org, bcs)

    root = 0
    with Timer("~~Contact: Compare LHS, RHS and solution"):
        compare_mpc_lhs(A_org, A, mpc, root=root)
        compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = gather_PETScMatrix(A_org, root=root)
        K = gather_transformation_matrix(mpc, root=root)
        L_np = gather_PETScVector(L_org, root=root)
        u_mpc = gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(mesh.comm, [TimingType.wall])
Esempio n. 8
0
def demo_stacked_cubes(theta, ct, noslip, num_refinements, N0, timings=False):
    celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
    type_ext = "no_slip" if noslip else "slip"
    log_info(f"Run theta: {theta:.2f}, Cell: {celltype:s}, Noslip: {noslip:b}")

    # Read in mesh
    mesh_3D_dolfin(theta=theta,
                   ct=ct,
                   ext=celltype,
                   num_refinements=num_refinements,
                   N0=N0)
    comm.barrier()
    with XDMFFile(comm, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf",
                  "r") as xdmf:
        mesh = xdmf.read_mesh(name="mesh")
        tdim = mesh.topology.dim
        fdim = tdim - 1
        mesh.topology.create_connectivity(tdim, tdim)
        mesh.topology.create_connectivity(fdim, tdim)
        mt = xdmf.read_meshtags(mesh, "facet_tags")
    mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext:s}"

    # Create functionspaces
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Define boundary conditions
    # Bottom boundary is fixed in all directions
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bottom_dofs = locate_dofs_topological(V, fdim, mt.find(5))
    bc_bottom = dirichletbc(u_bc, bottom_dofs)

    g_vec = [0, 0, -4.25e-1]
    if not noslip:
        # Helper for orienting traction
        r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])

    def top_v(x):
        values = np.empty((3, x.shape[1]))
        values[0] = g_vec[0]
        values[1] = g_vec[1]
        values[2] = g_vec[2]
        return values

    u_top = Function(V)
    u_top.interpolate(top_v)
    u_top.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT_VALUES,
                             mode=PETSc.ScatterMode.FORWARD)

    top_dofs = locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = dirichletbc(u_top, top_dofs)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) +
                lmbda * tr(sym(grad(v))) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx

    log_info("Create constraints")

    mpc = MultiPointConstraint(V)
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if noslip:
        with Timer(f"{num_dofs}: Contact-constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer(f"{num_dofs}: FacetNormal"):
            nh = create_normal_approximation(V, mt, 4)
        with Timer(f"{num_dofs}: Contact-constraint"):
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    with Timer(f"{num_dofs}: MPC-init"):
        mpc.finalize()
    null_space = rigid_motions_nullspace(mpc.function_space)
    log_info(f"Num dofs: {num_dofs}")

    log_info("Assemble matrix")
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer(f"{num_dofs}: Assemble-matrix (C++)"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer(f"{num_dofs}: Assemble-vector (C++)"):
        b = assemble_vector(linear_form, mpc)
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)
    list_timings(MPI.COMM_WORLD, [TimingType.wall])

    # Solve Linear problem
    opts = PETSc.Options()
    # opts["ksp_rtol"] = 1.0e-8
    opts["pc_type"] = "gamg"
    # opts["pc_gamg_type"] = "agg"
    # opts["pc_gamg_coarse_eq_limit"] = 1000
    # opts["pc_gamg_sym_graph"] = True
    # opts["mg_levels_ksp_type"] = "chebyshev"
    # opts["mg_levels_pc_type"] = "jacobi"
    # opts["mg_levels_esteig_ksp_type"] = "cg"
    # opts["matptap_via"] = "scalable"
    # opts["pc_gamg_square_graph"] = 2
    # opts["pc_gamg_threshold"] = 1e-2
    # opts["help"] = None  # List all available options
    if timings:
        opts["ksp_view"] = None  # List progress of solver
    # Create functionspace and build near nullspace

    A.setNearNullSpace(null_space)
    solver = PETSc.KSP().create(comm)
    solver.setOperators(A)
    solver.setFromOptions()
    uh = b.copy()
    uh.set(0)
    log_info("Solve")
    with Timer(f"{num_dofs}: Solve"):
        solver.solve(b, uh)
        uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                       mode=PETSc.ScatterMode.FORWARD)
    log_info("Backsub")
    with Timer(f"{num_dofs}: Backsubstitution"):
        mpc.backsubstitution(uh)

    it = solver.getIterationNumber()

    # Write solution to file
    u_h = Function(mpc.function_space)
    u_h.vector.setArray(uh.array)
    u_h.name = "u"
    with XDMFFile(comm, f"results/bench_contact_{num_dofs}.xdmf",
                  "w") as outfile:
        outfile.write_mesh(mesh)
        outfile.write_function(u_h, 0.0,
                               f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
    # Write performance data to file
    if timings:
        log_info("Timings")
        num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
        results_file = None
        num_procs = comm.size
        if comm.rank == 0:
            results_file = open(f"results_bench_{num_dofs}.txt", "w")
            print(f"#Procs: {num_procs}", file=results_file)
            print(f"#Dofs: {num_dofs}", file=results_file)
            print(f"#Slaves: {num_slaves}", file=results_file)
            print(f"#Iterations: {it}", file=results_file)
        operations = [
            "Solve", "Assemble-matrix (C++)", "MPC-init", "Contact-constraint",
            "FacetNormal", "Assemble-vector (C++)", "Backsubstitution"
        ]
        if comm.rank == 0:
            print("Operation  #Calls Avg Min Max", file=results_file)
        for op in operations:
            op_timing = timing(f"{num_dofs}: {op}")
            num_calls = op_timing[0]
            wall_time = op_timing[1]
            avg_time = comm.allreduce(wall_time, op=MPI.SUM) / comm.size
            min_time = comm.allreduce(wall_time, op=MPI.MIN)
            max_time = comm.allreduce(wall_time, op=MPI.MAX)
            if comm.rank == 0:
                print(op,
                      num_calls,
                      avg_time,
                      min_time,
                      max_time,
                      file=results_file)
        list_timings(MPI.COMM_WORLD, [TimingType.wall])
Esempio n. 9
0
def test_mixed_element(cell_type, ghost_mode):
    N = 4
    mesh = dolfinx.mesh.create_unit_square(
        MPI.COMM_WORLD, N, N, cell_type=cell_type, ghost_mode=ghost_mode)

    # Inlet velocity Dirichlet BC
    bc_facets = dolfinx.mesh.locate_entities_boundary(
        mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 0.0))
    other_facets = dolfinx.mesh.locate_entities_boundary(
        mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 1.0))
    arg_sort = np.argsort(other_facets)
    mt = dolfinx.mesh.meshtags(mesh, mesh.topology.dim - 1,
                               other_facets[arg_sort], np.full_like(other_facets, 1))

    # Rotate the mesh to induce more interesting slip BCs
    th = np.pi / 4.0
    rot = np.array([[np.cos(th), -np.sin(th)],
                    [np.sin(th), np.cos(th)]])
    gdim = mesh.geometry.dim
    mesh.geometry.x[:, :gdim] = (rot @ mesh.geometry.x[:, :gdim].T).T

    # Create the function space
    Ve = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    Qe = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    V = dolfinx.fem.FunctionSpace(mesh, Ve)
    Q = dolfinx.fem.FunctionSpace(mesh, Qe)
    W = dolfinx.fem.FunctionSpace(mesh, Ve * Qe)

    inlet_velocity = dolfinx.fem.Function(V)
    inlet_velocity.interpolate(
        lambda x: np.zeros((mesh.geometry.dim, x[0].shape[0]), dtype=np.double))
    inlet_velocity.x.scatter_forward()

    # -- Nested assembly
    dofs = dolfinx.fem.locate_dofs_topological(V, 1, bc_facets)
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs)

    # Collect Dirichlet boundary conditions
    bcs = [bc1]
    mpc_v = dolfinx_mpc.MultiPointConstraint(V)
    n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    mpc_v.create_slip_constraint(V, (mt, 1), n_approx, bcs=bcs)
    mpc_v.finalize()

    mpc_q = dolfinx_mpc.MultiPointConstraint(Q)
    mpc_q.finalize()

    f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0)))
    (u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
    (v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
    a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    a01 = - ufl.inner(p, ufl.div(v)) * ufl.dx
    a10 = - ufl.inner(ufl.div(u), q) * ufl.dx
    a11 = None

    L0 = ufl.inner(f, v) * ufl.dx
    L1 = ufl.inner(
        dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx

    n = ufl.FacetNormal(mesh)
    g_tau = ufl.as_vector((0.0, 0.0))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

    a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds
    a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot(
        - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
    L0 += ufl.inner(g_tau, v) * ds

    a_nest = dolfinx.fem.form(((a00, a01),
                               (a10, a11)))
    L_nest = dolfinx.fem.form((L0, L1))

    # Assemble MPC nest matrix
    A_nest = dolfinx_mpc.create_matrix_nest(a_nest, [mpc_v, mpc_q])
    dolfinx_mpc.assemble_matrix_nest(A_nest, a_nest, [mpc_v, mpc_q], bcs)
    A_nest.assemble()

    # Assemble original nest matrix
    A_org_nest = dolfinx.fem.petsc.assemble_matrix_nest(a_nest, bcs)
    A_org_nest.assemble()

    # MPC nested rhs
    b_nest = dolfinx_mpc.create_vector_nest(L_nest, [mpc_v, mpc_q])
    dolfinx_mpc.assemble_vector_nest(b_nest, L_nest, [mpc_v, mpc_q])
    dolfinx.fem.petsc.apply_lifting_nest(b_nest, a_nest, bcs)

    for b_sub in b_nest.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)

    bcs0 = dolfinx.fem.bcs_by_block(
        dolfinx.fem.extract_function_spaces(L_nest), bcs)
    dolfinx.fem.petsc.set_bc_nest(b_nest, bcs0)

    # Original dolfinx rhs
    b_org_nest = dolfinx.fem.petsc.assemble_vector_nest(L_nest)
    dolfinx.fem.petsc.apply_lifting_nest(b_org_nest, a_nest, bcs)

    for b_sub in b_org_nest.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc_nest(b_org_nest, bcs0)

    # -- Monolithic assembly
    dofs = dolfinx.fem.locate_dofs_topological((W.sub(0), V), 1, bc_facets)
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0))

    bcs = [bc1]

    V, V_to_W = W.sub(0).collapse()
    mpc_vq = dolfinx_mpc.MultiPointConstraint(W)
    n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    mpc_vq.create_slip_constraint(W.sub(0), (mt, 1), n_approx, bcs=bcs)
    mpc_vq.finalize()

    f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0)))
    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    a = (
        ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
        - ufl.inner(p, ufl.div(v)) * ufl.dx
        - ufl.inner(ufl.div(u), q) * ufl.dx
    )

    L = ufl.inner(f, v) * ufl.dx + ufl.inner(
        dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx

    # No prescribed shear stress
    n = ufl.FacetNormal(mesh)
    g_tau = ufl.as_vector((0.0, 0.0))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

    # Terms due to slip condition
    # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(
        - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
    L += ufl.inner(g_tau, v) * ds

    a, L = dolfinx.fem.form(a), dolfinx.fem.form(L)

    # Assemble LHS matrix and RHS vector
    A = dolfinx_mpc.assemble_matrix(a, mpc_vq, bcs)
    A.assemble()
    A_org = dolfinx.fem.petsc.assemble_matrix(a, bcs)
    A_org.assemble()

    b = dolfinx_mpc.assemble_vector(L, mpc_vq)
    b_org = dolfinx.fem.petsc.assemble_vector(L)

    # Set Dirichlet boundary condition values in the RHS
    dolfinx_mpc.apply_lifting(b, [a], [bcs], mpc_vq)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc(b, bcs)
    dolfinx.fem.petsc.apply_lifting(b_org, [a], [bcs])
    b_org.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc(b_org, bcs)

    # -- Verification
    def nest_matrix_norm(A):
        assert A.getType() == "nest"
        nrows, ncols = A.getNestSize()
        sub_A = [A.getNestSubMatrix(row, col)
                 for row in range(nrows) for col in range(ncols)]
        return sum(map(lambda A_: A_.norm()**2 if A_ else 0.0, sub_A))**0.5

    # -- Ensure monolithic and nest matrices are the same
    assert np.isclose(nest_matrix_norm(A_nest), A.norm())
Esempio n. 10
0
def bench_elasticity_one(r_lvl: int = 0,
                         out_hdf5: h5py.File = None,
                         xdmf: bool = False,
                         boomeramg: bool = False,
                         kspview: bool = False):
    N = 3
    mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
    for i in range(r_lvl):
        mesh.topology.create_entities(mesh.topology.dim - 2)
        mesh = refine(mesh, redistribute=True)

    fdim = mesh.topology.dim - 1
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Generate Dirichlet BC on lower boundary (Fixed)
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    def boundaries(x):
        return np.isclose(x[0], np.finfo(float).eps)

    facets = locate_entities_boundary(mesh, fdim, boundaries)
    topological_dofs = locate_dofs_topological(V, fdim, facets)
    bc = dirichletbc(u_bc, topological_dofs)
    bcs = [bc]

    # Create traction meshtag
    def traction_boundary(x):
        return np.isclose(x[0], 1)

    t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
    facet_values = np.ones(len(t_facets), dtype=np.int32)
    arg_sort = np.argsort(t_facets)
    mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values[arg_sort])

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)

    # Elasticity parameters
    E = 1.0e4
    nu = 0.1
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))
    g = Constant(mesh, (0, 0, -1e2))

    # Stress computation
    def sigma(v):
        return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(
            len(v))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1)

    # Create MPC
    with Timer("~Elasticity: Init constraint"):

        def l2b(li):
            return np.array(li, dtype=np.float64).tobytes()

        s_m_c = {l2b([1, 0, 0]): {l2b([1, 0, 1]): 0.5}}
        mpc = MultiPointConstraint(V)
        mpc.create_general_constraint(s_m_c, 2, 2)
        mpc.finalize()

    # Setup MPC system
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer("~Elasticity: Assemble LHS and RHS"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
        b = assemble_vector(linear_form, mpc)
    # Apply boundary conditions
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)

    # Create functionspace and function for mpc vector

    # Solve Linear problem
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    opts = PETSc.Options()
    if boomeramg:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-5
        opts["pc_type"] = "hypre"
        opts['pc_hypre_type'] = 'boomeramg'
        opts["pc_hypre_boomeramg_max_iter"] = 1
        opts["pc_hypre_boomeramg_cycle_type"] = "v"
        # opts["pc_hypre_boomeramg_print_statistics"] = 1
    else:
        opts["ksp_rtol"] = 1.0e-10
        opts["pc_type"] = "gamg"
        opts["pc_gamg_type"] = "agg"
        opts["pc_gamg_coarse_eq_limit"] = 1000
        opts["pc_gamg_sym_graph"] = True
        opts["mg_levels_ksp_type"] = "chebyshev"
        opts["mg_levels_pc_type"] = "jacobi"
        opts["mg_levels_esteig_ksp_type"] = "cg"
        opts["matptap_via"] = "scalable"
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    with Timer("~Elasticity: Solve problem") as timer:
        null_space = rigid_motions_nullspace(mpc.function_space)
        A.setNearNullSpace(null_space)
        solver.setFromOptions()
        solver.setOperators(A)
        # Solve linear problem
        uh = b.copy()
        uh.set(0)
        solver.solve(b, uh)
        uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                       mode=PETSc.ScatterMode.FORWARD)
        mpc.backsubstitution(uh)
        solver_time = timer.elapsed()

    it = solver.getIterationNumber()
    if kspview:
        solver.view()

    # Print max usage of summary
    mem = sum(
        MPI.COMM_WORLD.allgather(
            resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if MPI.COMM_WORLD.rank == 0:
        print(f"Rlvl {r_lvl}, Iterations {it}")
        print(f"Rlvl {r_lvl}, Max usage {mem} (kb), #dofs {num_dofs}")

    if out_hdf5 is not None:
        d_set = out_hdf5.get("its")
        d_set[r_lvl] = it
        d_set = out_hdf5.get("num_dofs")
        d_set[r_lvl] = num_dofs
        d_set = out_hdf5.get("solve_time")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
    if xdmf:
        # Write solution to file
        u_h = Function(mpc.function_space)
        u_h.vector.setArray(uh.array)
        u_h.name = "u_mpc"

        fname = f"results/bench_elasticity_{r_lvl}.xdmf"
        with XDMFFile(MPI.COMM_WORLD, fname, "w") as outfile:
            outfile.write_mesh(mesh)
            outfile.write_function(u_h)