Esempio n. 1
0
def plot_domain_for_different_margins(path, margins=None):
    if not margins: margins = [20, 40, 60]
    rpnObj = RPN(path)

    lons2d, lats2d = rpnObj.get_longitudes_and_latitudes()

    # projection parameters
    lon_1 = -68
    lat_1 = 52
    lon_2 = 16.65
    lat_2 = 0.0

    rot_lat_lon = RotatedLatLon(lon1=lon_1, lat1=lat_1, lon2=lon_2, lat2=lat_2)
    xll, yll = rot_lat_lon.toProjectionXY(lons2d[0, 0], lats2d[0, 0])
    xur, yur = rot_lat_lon.toProjectionXY(lons2d[-1, -1], lats2d[-1, -1])

    if xll < 0: xll += 360.0
    if xur < 0: xur += 360.0

    nx, ny = lons2d.shape

    dx = (xur - xll) / float(nx - 1)
    dy = (yur - yll) / float(ny - 1)

    print(dx, dy)
    print(xur, yur, xll, yll)

    x1 = xll - dx / 2.0
    y1 = yll - dy / 2.0
    x2 = xur + dx / 2.0
    y2 = yur + dy / 2.0

    x1lon, y1lat = rot_lat_lon.toGeographicLonLat(x1, y1)
    x2lon, y2lat = rot_lat_lon.toGeographicLonLat(x2, y2)

    llcrnrlon, llcrnrlat = rot_lat_lon.toGeographicLonLat(x1 - dx, y1 - dx)
    urcrnrlon, urcrnrlat = rot_lat_lon.toGeographicLonLat(x2 + dx, y2 + dx)

    basemap = Basemap(projection="omerc",
                      lon_1=lon_1,
                      lat_1=lat_1,
                      lon_2=lon_2,
                      lat_2=lat_2,
                      llcrnrlon=llcrnrlon,
                      llcrnrlat=llcrnrlat,
                      urcrnrlon=urcrnrlon,
                      urcrnrlat=urcrnrlat,
                      no_rot=True,
                      resolution="l")

    basemap.drawcoastlines()
    basemap.drawrivers()

    x1, y1 = basemap(x1lon, y1lat)
    x2, y2 = basemap(x2lon, y2lat)

    # add rectangle for the grid 220x220
    #    r1 = Rectangle((x1, y1), x2-x1, y2-y1, facecolor="none", edgecolor="r",  linewidth=5  )

    ax = plt.gca()
    assert isinstance(ax, Axes)
    #    xr1_label, yr1_label = rot_lat_lon.toGeographicLonLat(xur - 2 * dx, yll + 2 * dy)
    #    xr1_label, yr1_label = basemap( xr1_label, yr1_label )
    #    ax.annotate("{0}x{1}".format(nx, ny), xy = (xr1_label, yr1_label), va = "bottom", ha = "right", color = "r")
    #    assert isinstance(ax, Axes)
    #    ax.add_patch(r1)

    margins_all = [0] + margins

    for margin in margins_all:
        # mfree = margin - 20
        xlli = xll + margin * dx
        ylli = yll + margin * dy
        xuri = xur - margin * dx
        yuri = yur - margin * dy

        x1lon, y1lat = rot_lat_lon.toGeographicLonLat(xlli, ylli)
        x2lon, y2lat = rot_lat_lon.toGeographicLonLat(xuri, yuri)

        x1, y1 = basemap(x1lon, y1lat)
        x2, y2 = basemap(x2lon, y2lat)

        ri = Rectangle((x1, y1),
                       x2 - x1,
                       y2 - y1,
                       facecolor="none",
                       edgecolor="r",
                       linewidth=5)
        ax.add_patch(ri)

        xri_label, yri_label = rot_lat_lon.toGeographicLonLat(
            xlli + 2 * dx, yuri - 2 * dy)
        xri_label, yri_label = basemap(xri_label, yri_label)
        ax.annotate("{0}x{1}\nmarg. = {2}".format(nx - margin * 2,
                                                  ny - margin * 2,
                                                  margin + 20),
                    xy=(xri_label, yri_label),
                    va="top",
                    ha="left",
                    color="k",
                    backgroundcolor="w")

    plt.show()
Esempio n. 2
0
def diagnose(station_ids=None, model_data_path=None):

    manager = Crcm5ModelDataManager(samples_folder_path=model_data_path,
                                    file_name_prefix="pm",
                                    all_files_in_samples_folder=True,
                                    need_cell_manager=True)

    nx, ny = manager.lons2D.shape

    rot_lat_lon = RotatedLatLon(lon1=-68, lat1=52, lon2=16.65, lat2=0.0)

    x00, y00 = rot_lat_lon.toProjectionXY(manager.lons2D[0, 0],
                                          manager.lats2D[0, 0])
    x10, y10 = rot_lat_lon.toProjectionXY(manager.lons2D[1, 0],
                                          manager.lats2D[1, 0])
    x01, y01 = rot_lat_lon.toProjectionXY(manager.lons2D[0, 1],
                                          manager.lats2D[0, 1])

    dx = x10 - x00
    dy = y01 - y00

    print("dx, dy = {0}, {1}".format(dx, dy))
    areas = rot_lat_lon.get_areas_of_gridcells(
        dx, dy, nx, ny, y00, 1)  #1 -since the index is starting from 1
    print(areas[0, 0])

    start_date = datetime(1986, 1, 1)
    end_date = datetime(1986, 12, 31)

    stations = cehq_station.read_station_data(selected_ids=station_ids,
                                              start_date=start_date,
                                              end_date=end_date)

    stations.sort(key=lambda x: x.latitude, reverse=True)

    for i, s in enumerate(stations):

        fig = plt.figure()
        #3 columns
        gs = GridSpec(5,
                      3,
                      hspace=0.2,
                      wspace=0.2,
                      right=0.98,
                      left=0.1,
                      top=0.98)

        model_ts = manager.get_streamflow_timeseries_for_station(
            s, start_date=start_date, end_date=end_date, nneighbours=9)

        print(model_ts.time[0], model_ts.time[-1])

        i_model0, j_model0 = model_ts.metadata["ix"], model_ts.metadata["jy"]
        mask = manager.get_mask_for_cells_upstream(i_model0, j_model0)

        #hydrographs
        ax = fig.add_subplot(gs[0, 0])
        plot_streamflows(ax, s, model_ts)

        #relative error
        ax = fig.add_subplot(gs[1, 0])
        plot_streamflow_re(ax, s, model_ts)

        #directions
        plot_directions_and_positions(fig.add_subplot(gs[:2, 1]),
                                      s,
                                      model_ts,
                                      manager,
                                      rot_lat_lon,
                                      mask=mask)

        #runoff
        ax = fig.add_subplot(gs[2, 0])
        plot_runoff(ax, manager, areas, model_ts, mask=mask)

        #runoff from gldas
        ax = fig.add_subplot(gs[2, 1])
        #plot_gldas_runoff(ax, manager, areas, model_ts, mask = mask)

        #temperature
        ax_temp = fig.add_subplot(gs[3, 0])
        ax_prec = fig.add_subplot(gs[4, 0])

        plot_total_precip_and_temp_re_1d(ax_prec,
                                         ax_temp,
                                         manager,
                                         rot_lat_lon,
                                         areas,
                                         model_ts,
                                         mask=mask)

        #swe timeseries
        ax = fig.add_subplot(gs[3, 1])
        plot_swe_timeseries(ax, manager, areas, model_ts, mask=mask)

        #print np.where(mask == 1)
        print("(i, j) = ({0}, {1})".format(model_ts.metadata["ix"],
                                           model_ts.metadata["jy"]))

        fig.savefig("diagnose_{0}_{1:.2f}deg.pdf".format(s.id, dx))
Esempio n. 3
0
def plot_domain_for_different_margins(path, margins=None):
    if not margins: margins = [20, 40, 60]
    rpnObj = RPN(path)

    lons2d, lats2d = rpnObj.get_longitudes_and_latitudes()

    # projection parameters
    lon_1 = -68
    lat_1 = 52
    lon_2 = 16.65
    lat_2 = 0.0

    rot_lat_lon = RotatedLatLon(lon1=lon_1, lat1=lat_1, lon2=lon_2, lat2=lat_2)
    xll, yll = rot_lat_lon.toProjectionXY(lons2d[0, 0], lats2d[0, 0])
    xur, yur = rot_lat_lon.toProjectionXY(lons2d[-1, -1], lats2d[-1, -1])

    if xll < 0: xll += 360.0
    if xur < 0: xur += 360.0

    nx, ny = lons2d.shape

    dx = (xur - xll) / float(nx - 1)
    dy = (yur - yll) / float(ny - 1)

    print(dx, dy)
    print(xur, yur, xll, yll)

    x1 = xll - dx / 2.0
    y1 = yll - dy / 2.0
    x2 = xur + dx / 2.0
    y2 = yur + dy / 2.0

    x1lon, y1lat = rot_lat_lon.toGeographicLonLat(x1, y1)
    x2lon, y2lat = rot_lat_lon.toGeographicLonLat(x2, y2)

    llcrnrlon, llcrnrlat = rot_lat_lon.toGeographicLonLat(x1 - dx, y1 - dx)
    urcrnrlon, urcrnrlat = rot_lat_lon.toGeographicLonLat(x2 + dx, y2 + dx)

    basemap = Basemap(projection="omerc",
                      lon_1=lon_1, lat_1=lat_1,
                      lon_2=lon_2, lat_2=lat_2,
                      llcrnrlon=llcrnrlon, llcrnrlat=llcrnrlat,
                      urcrnrlon=urcrnrlon, urcrnrlat=urcrnrlat, no_rot=True, resolution="l")

    basemap.drawcoastlines()
    basemap.drawrivers()

    x1, y1 = basemap(x1lon, y1lat)
    x2, y2 = basemap(x2lon, y2lat)

    # add rectangle for the grid 220x220
    #    r1 = Rectangle((x1, y1), x2-x1, y2-y1, facecolor="none", edgecolor="r",  linewidth=5  )

    ax = plt.gca()
    assert isinstance(ax, Axes)
    #    xr1_label, yr1_label = rot_lat_lon.toGeographicLonLat(xur - 2 * dx, yll + 2 * dy)
    #    xr1_label, yr1_label = basemap( xr1_label, yr1_label )
    #    ax.annotate("{0}x{1}".format(nx, ny), xy = (xr1_label, yr1_label), va = "bottom", ha = "right", color = "r")
    #    assert isinstance(ax, Axes)
    #    ax.add_patch(r1)

    margins_all = [0] + margins

    for margin in margins_all:
        # mfree = margin - 20
        xlli = xll + margin * dx
        ylli = yll + margin * dy
        xuri = xur - margin * dx
        yuri = yur - margin * dy

        x1lon, y1lat = rot_lat_lon.toGeographicLonLat(xlli, ylli)
        x2lon, y2lat = rot_lat_lon.toGeographicLonLat(xuri, yuri)

        x1, y1 = basemap(x1lon, y1lat)
        x2, y2 = basemap(x2lon, y2lat)

        ri = Rectangle((x1, y1), x2 - x1, y2 - y1, facecolor="none", edgecolor="r", linewidth=5)
        ax.add_patch(ri)

        xri_label, yri_label = rot_lat_lon.toGeographicLonLat(xlli + 2 * dx, yuri - 2 * dy)
        xri_label, yri_label = basemap(xri_label, yri_label)
        ax.annotate("{0}x{1}\nmarg. = {2}".format(nx - margin * 2, ny - margin * 2, margin + 20),
                    xy=(xri_label, yri_label),
                    va="top", ha="left", color="k", backgroundcolor="w")

    plt.show()