Esempio n. 1
0
    def reset(self):
        FA.reset(self)

        # self.network = buildNetwork(self.indim, 2*(self.indim+self.outdim), self.outdim)
        self.network = buildNetwork(self.indim, self.outdim, bias=True)
        self.network._setParameters(random.normal(0, 0.1, self.network.params.shape))
        self.pybdataset = SupervisedDataSet(self.indim, self.outdim)
Esempio n. 2
0
 def reset(self):
     FA.reset(self)
     
     # initialize the LWPR function
     self.lwpr = LWPR(self.indim, self.outdim)     
     self.lwpr.init_D = 10.*np.eye(self.indim)
     self.lwpr.init_alpha = 0.1*np.ones([self.indim, self.indim])
     self.lwpr.meta = True
Esempio n. 3
0
 def reset(self):
     FA.reset(self)
     self.centers = [np.random.uniform(-1, 1, self.indim) for i in xrange(self.numCenters)]
     self.W = np.random.random((self.numCenters, self.outdim))
     
     # parameters for maximum map
     self.alpha = 100.
     self.SN = np.matrix(self.alpha*np.eye(self.numCenters))
     self.mN = np.matrix(np.zeros((self.numCenters, 1), float))
Esempio n. 4
0
 def reset(self):
     """ this initializes the function approximator to an initial state,
         forgetting everything it has learned before. """
     FA.reset(self)
     self.matrix = np.random.uniform(-0.1, 0.1, (self.indim + 1, self.outdim))