def reset(self): FA.reset(self) # self.network = buildNetwork(self.indim, 2*(self.indim+self.outdim), self.outdim) self.network = buildNetwork(self.indim, self.outdim, bias=True) self.network._setParameters(random.normal(0, 0.1, self.network.params.shape)) self.pybdataset = SupervisedDataSet(self.indim, self.outdim)
def reset(self): FA.reset(self) # initialize the LWPR function self.lwpr = LWPR(self.indim, self.outdim) self.lwpr.init_D = 10.*np.eye(self.indim) self.lwpr.init_alpha = 0.1*np.ones([self.indim, self.indim]) self.lwpr.meta = True
def reset(self): FA.reset(self) self.centers = [np.random.uniform(-1, 1, self.indim) for i in xrange(self.numCenters)] self.W = np.random.random((self.numCenters, self.outdim)) # parameters for maximum map self.alpha = 100. self.SN = np.matrix(self.alpha*np.eye(self.numCenters)) self.mN = np.matrix(np.zeros((self.numCenters, 1), float))
def reset(self): """ this initializes the function approximator to an initial state, forgetting everything it has learned before. """ FA.reset(self) self.matrix = np.random.uniform(-0.1, 0.1, (self.indim + 1, self.outdim))