def train_double_dqn(env, num_actions): results_dir = './results/double_dqn/' + game training_epsilon = 0.01 test_epsilon = 0.001 frame_history = 1 dqn = atari_dqn.AtariDQN(frame_history, num_actions) agent = dq_learner_pc.DQLearner(dqn, num_actions, frame_history=frame_history, epsilon_end=training_epsilon) train(agent, env, test_epsilon, results_dir)
def train_dqn(env, num_actions): results_dir = './results/dqn/' + game training_epsilon = 0.1 test_epsilon = 0.05 frame_history = 1 dqn = atari_dqn.AtariDQN(frame_history, num_actions, shared_bias=False) agent = dq_learner_pc.DQLearner(dqn, num_actions, target_copy_freq=10000, epsilon_end=training_epsilon, double=False, frame_history=frame_history) train(agent, env, test_epsilon, results_dir)
def train_double_dqn(env, num_actions): results_dir = './results/double_dqn/' + game training_epsilon = 0.01 test_epsilon = 0.001 frame_history = 4 cts_size = (42, 42, 8) enc_func = atari_encoder.encode_state dqn = atari_dqn.AtariDQN(frame_history, num_actions) agent = dq_learner_pc.DQLearner(dqn, num_actions, frame_history=frame_history, epsilon_end=training_epsilon, state_encoder=enc_func, cts_size=cts_size) train(agent, env, test_epsilon, results_dir, max_episode_steps=None)
def train_dqn(env, num_actions): results_dir = './results/dqn/' + game training_epsilon = 0.1 test_epsilon = 0.05 frame_history = 4 cts_size = (42, 42, 8) enc_func = atari_encoder.encode_state dqn = atari_dqn.AtariDQN(frame_history, num_actions, shared_bias=False) agent = dq_learner_pc.DQLearner(dqn, num_actions, target_copy_freq=10000, epsilon_end=training_epsilon, double=False, frame_history=frame_history, state_encoder=enc_func, cts_size=cts_size) train(agent, env, test_epsilon, results_dir, max_episode_steps=None)