def process_reflp_data(datalist, conf, roi_file, bkg_roi_file=None, no_bkg=False, **kwargs): """ This function combines Steps 1 through 3 in section 2.4.6.1 of the data reduction process for Reduction from TOF to lambda_T as specified by the document at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a list of file names, a L{hlr_utils.Configure} object, region-of-interest (ROI) file for the normalization dataset, a background region-of-interest (ROI) file and an optional flag about background subtractionand processes the data accordingly. @param datalist: The filenames of the data to be processed @type datalist: C{list} of C{string}s @param conf: Object that contains the current setup of the driver @type conf: L{hlr_utils.Configure} @param roi_file: The file containing the list of pixel IDs for the region of interest. This only applies to normalization data. @type roi_file: C{string} @param bkg_roi_file: The file containing the list of pixel IDs for the (possible) background region of interest. @type bkg_roi_file: C{string} @param no_bkg: (OPTIONAL) Flag which determines if the background will be calculated and subtracted. @type no_bkg: C{boolean} @param kwargs: A list of keyword arguments that the function accepts: @keyword inst_geom_dst: File object that contains instrument geometry information. @type inst_geom_dst: C{DST.GeomDST} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import hlr_utils import common_lib import dr_lib # Check keywords try: i_geom_dst = kwargs["inst_geom_dst"] except KeyError: i_geom_dst = None try: t = kwargs["timer"] except KeyError: t = None if roi_file is not None: # Normalization dataset_type = "norm" else: # Sample data dataset_type = "data" so_axis = "time_of_flight" # Step 0: Open data files and select ROI (if necessary) if conf.verbose: print "Reading %s file" % dataset_type if len(conf.norm_data_paths) and dataset_type == "norm": data_path = conf.norm_data_paths.toPath() else: data_path = conf.data_paths.toPath() (d_som1, b_som1) = dr_lib.add_files_bg(datalist, Data_Paths=data_path, SO_Axis=so_axis, dataset_type=dataset_type, Signal_ROI=roi_file, Bkg_ROI=bkg_roi_file, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading %s " % dataset_type) # Override geometry if necessary if i_geom_dst is not None: i_geom_dst.setGeometry(conf.data_paths.toPath(), d_som1) if dataset_type == "data": # Get TOF bin width conf.delta_TOF = d_som1[0].axis[0].val[1] - d_som1[0].axis[0].val[0] if conf.mon_norm: if conf.verbose: print "Reading in monitor data from %s file" % dataset_type # The [0] is to get the data SOM and ignore the None background SOM dm_som1 = dr_lib.add_files(datalist, Data_Paths=conf.mon_path.toPath(), SO_Axis=so_axis, dataset_type=dataset_type, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading monitor data ") else: dm_som1 = None # Step 1: Sum all spectra along the low resolution direction # Set sorting for REF_L if conf.verbose: print "Summing over low resolution direction" # Set sorting (y_sort, cent_pixel) = hlr_utils.get_ref_integration_direction(conf.int_dir, conf.inst, d_som1.attr_list.instrument) if t is not None: t.getTime(False) d_som2 = dr_lib.sum_all_spectra(d_som1, y_sort=y_sort, stripe=True, pixel_fix=cent_pixel) if b_som1 is not None: b_som2 = dr_lib.sum_all_spectra(b_som1, y_sort=y_sort, stripe=True, pixel_fix=cent_pixel) del b_som1 else: b_som2 = b_som1 if t is not None: t.getTime(msg="After summing low resolution direction ") del d_som1 # Determine background spectrum if conf.verbose and not no_bkg: print "Determining %s background" % dataset_type if b_som2 is not None: B = dr_lib.calculate_ref_background(b_som2, no_bkg, conf.inst, None, aobj=d_som2) if t is not None: t.getTime(msg="After background determination") # Subtract background spectrum from data spectra if not no_bkg: d_som3 = dr_lib.subtract_bkg_from_data(d_som2, B, verbose=conf.verbose, timer=t, dataset1="data", dataset2="background") else: d_som3 = d_som2 del d_som2 # Zero the spectra if necessary if roi_file is None and (conf.tof_cut_min is not None or \ conf.tof_cut_max is not None): import utils # Find the indicies for the non zero range if conf.tof_cut_min is None: conf.TOF_min = d_som3[0].axis[0].val[0] start_index = 0 else: start_index = utils.bisect_helper(d_som3[0].axis[0].val, conf.tof_cut_min) if conf.tof_cut_max is None: conf.TOF_max = d_som3[0].axis[0].val[-1] end_index = len(d_som3[0].axis[0].val) - 1 else: end_index = utils.bisect_helper(d_som3[0].axis[0].val, conf.tof_cut_max) nz_list = [] for i in xrange(hlr_utils.get_length(d_som3)): nz_list.append((start_index, end_index)) d_som4 = dr_lib.zero_spectra(d_som3, nz_list, use_bin_index=True) else: conf.TOF_min = d_som3[0].axis[0].val[0] conf.TOF_max = d_som3[0].axis[0].val[-1] d_som4 = d_som3 del d_som3 # Step N: Convert TOF to wavelength if conf.verbose: print "Converting TOF to wavelength" if t is not None: t.getTime(False) d_som5 = common_lib.tof_to_wavelength(d_som4, inst_param="total", units="microsecond") if dm_som1 is not None: dm_som2 = common_lib.tof_to_wavelength(dm_som1, units="microsecond") else: dm_som2 = None del dm_som1 if t is not None: t.getTime(msg="After converting TOF to wavelength ") del d_som4 if conf.mon_norm: dm_som3 = dr_lib.rebin_monitor(dm_som2, d_som5, rtype="frac") else: dm_som3 = None del dm_som2 if not conf.mon_norm: # Step 2: Multiply the spectra by the proton charge if conf.verbose: print "Multiply spectra by proton charge" pc_tag = dataset_type + "-proton_charge" proton_charge = d_som5.attr_list[pc_tag] if t is not None: t.getTime(False) d_som6 = common_lib.div_ncerr(d_som5, (proton_charge.getValue(), 0.0)) if t is not None: t.getTime(msg="After scaling by proton charge ") else: if conf.verbose: print "Normalize by monitor spectrum" if t is not None: t.getTime(False) d_som6 = common_lib.div_ncerr(d_som5, dm_som3) if t is not None: t.getTime(msg="After monitor normalization ") del d_som5, dm_som3 if roi_file is None: return d_som6 else: # Step 3: Make one spectrum for normalization dataset # Need to create a final rebinning axis pathlength = d_som6.attr_list.instrument.get_total_path( det_secondary=True) delta_lambda = common_lib.tof_to_wavelength((conf.delta_TOF, 0.0), pathlength=pathlength) lambda_bins = dr_lib.create_axis_from_data(d_som6, width=delta_lambda[0]) return dr_lib.sum_by_rebin_frac(d_som6, lambda_bins.toNessiList())
def process_reflp_data(datalist, conf, roi_file, bkg_roi_file=None, no_bkg=False, **kwargs): """ This function combines Steps 1 through 3 in section 2.4.6.1 of the data reduction process for Reduction from TOF to lambda_T as specified by the document at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a list of file names, a L{hlr_utils.Configure} object, region-of-interest (ROI) file for the normalization dataset, a background region-of-interest (ROI) file and an optional flag about background subtractionand processes the data accordingly. @param datalist: The filenames of the data to be processed @type datalist: C{list} of C{string}s @param conf: Object that contains the current setup of the driver @type conf: L{hlr_utils.Configure} @param roi_file: The file containing the list of pixel IDs for the region of interest. This only applies to normalization data. @type roi_file: C{string} @param bkg_roi_file: The file containing the list of pixel IDs for the (possible) background region of interest. @type bkg_roi_file: C{string} @param no_bkg: (OPTIONAL) Flag which determines if the background will be calculated and subtracted. @type no_bkg: C{boolean} @param kwargs: A list of keyword arguments that the function accepts: @keyword inst_geom_dst: File object that contains instrument geometry information. @type inst_geom_dst: C{DST.GeomDST} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import hlr_utils import common_lib import dr_lib # Check keywords try: i_geom_dst = kwargs["inst_geom_dst"] except KeyError: i_geom_dst = None try: t = kwargs["timer"] except KeyError: t = None if roi_file is not None: # Normalization dataset_type = "norm" else: # Sample data dataset_type = "data" so_axis = "time_of_flight" # Step 0: Open data files and select ROI (if necessary) if conf.verbose: print "Reading %s file" % dataset_type if len(conf.norm_data_paths) and dataset_type == "norm": data_path = conf.norm_data_paths.toPath() else: data_path = conf.data_paths.toPath() (d_som1, b_som1) = dr_lib.add_files_bg(datalist, Data_Paths=data_path, SO_Axis=so_axis, dataset_type=dataset_type, Signal_ROI=roi_file, Bkg_ROI=bkg_roi_file, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading %s " % dataset_type) # Override geometry if necessary if i_geom_dst is not None: i_geom_dst.setGeometry(conf.data_paths.toPath(), d_som1) if dataset_type == "data": # Get TOF bin width conf.delta_TOF = d_som1[0].axis[0].val[1] - d_som1[0].axis[0].val[0] if conf.mon_norm: if conf.verbose: print "Reading in monitor data from %s file" % dataset_type # The [0] is to get the data SOM and ignore the None background SOM dm_som1 = dr_lib.add_files(datalist, Data_Paths=conf.mon_path.toPath(), SO_Axis=so_axis, dataset_type=dataset_type, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading monitor data ") else: dm_som1 = None # Step 1: Sum all spectra along the low resolution direction # Set sorting for REF_L if conf.verbose: print "Summing over low resolution direction" # Set sorting (y_sort, cent_pixel) = hlr_utils.get_ref_integration_direction( conf.int_dir, conf.inst, d_som1.attr_list.instrument) if t is not None: t.getTime(False) d_som2 = dr_lib.sum_all_spectra(d_som1, y_sort=y_sort, stripe=True, pixel_fix=cent_pixel) if b_som1 is not None: b_som2 = dr_lib.sum_all_spectra(b_som1, y_sort=y_sort, stripe=True, pixel_fix=cent_pixel) del b_som1 else: b_som2 = b_som1 if t is not None: t.getTime(msg="After summing low resolution direction ") del d_som1 # Determine background spectrum if conf.verbose and not no_bkg: print "Determining %s background" % dataset_type if b_som2 is not None: B = dr_lib.calculate_ref_background(b_som2, no_bkg, conf.inst, None, aobj=d_som2) if t is not None: t.getTime(msg="After background determination") # Subtract background spectrum from data spectra if not no_bkg: d_som3 = dr_lib.subtract_bkg_from_data(d_som2, B, verbose=conf.verbose, timer=t, dataset1="data", dataset2="background") else: d_som3 = d_som2 del d_som2 # Zero the spectra if necessary if roi_file is None and (conf.tof_cut_min is not None or \ conf.tof_cut_max is not None): import utils # Find the indicies for the non zero range if conf.tof_cut_min is None: conf.TOF_min = d_som3[0].axis[0].val[0] start_index = 0 else: start_index = utils.bisect_helper(d_som3[0].axis[0].val, conf.tof_cut_min) if conf.tof_cut_max is None: conf.TOF_max = d_som3[0].axis[0].val[-1] end_index = len(d_som3[0].axis[0].val) - 1 else: end_index = utils.bisect_helper(d_som3[0].axis[0].val, conf.tof_cut_max) nz_list = [] for i in xrange(hlr_utils.get_length(d_som3)): nz_list.append((start_index, end_index)) d_som4 = dr_lib.zero_spectra(d_som3, nz_list, use_bin_index=True) else: conf.TOF_min = d_som3[0].axis[0].val[0] conf.TOF_max = d_som3[0].axis[0].val[-1] d_som4 = d_som3 del d_som3 # Step N: Convert TOF to wavelength if conf.verbose: print "Converting TOF to wavelength" if t is not None: t.getTime(False) d_som5 = common_lib.tof_to_wavelength(d_som4, inst_param="total", units="microsecond") if dm_som1 is not None: dm_som2 = common_lib.tof_to_wavelength(dm_som1, units="microsecond") else: dm_som2 = None del dm_som1 if t is not None: t.getTime(msg="After converting TOF to wavelength ") del d_som4 if conf.mon_norm: dm_som3 = dr_lib.rebin_monitor(dm_som2, d_som5, rtype="frac") else: dm_som3 = None del dm_som2 if not conf.mon_norm: # Step 2: Multiply the spectra by the proton charge if conf.verbose: print "Multiply spectra by proton charge" pc_tag = dataset_type + "-proton_charge" proton_charge = d_som5.attr_list[pc_tag] if t is not None: t.getTime(False) d_som6 = common_lib.div_ncerr(d_som5, (proton_charge.getValue(), 0.0)) if t is not None: t.getTime(msg="After scaling by proton charge ") else: if conf.verbose: print "Normalize by monitor spectrum" if t is not None: t.getTime(False) d_som6 = common_lib.div_ncerr(d_som5, dm_som3) if t is not None: t.getTime(msg="After monitor normalization ") del d_som5, dm_som3 if roi_file is None: return d_som6 else: # Step 3: Make one spectrum for normalization dataset # Need to create a final rebinning axis pathlength = d_som6.attr_list.instrument.get_total_path( det_secondary=True) delta_lambda = common_lib.tof_to_wavelength((conf.delta_TOF, 0.0), pathlength=pathlength) lambda_bins = dr_lib.create_axis_from_data(d_som6, width=delta_lambda[0]) return dr_lib.sum_by_rebin_frac(d_som6, lambda_bins.toNessiList())
def process_ref_data(datalist, conf, signal_roi_file, bkg_roi_file=None, no_bkg=False, **kwargs): """ This function combines Steps 1 through 6 in section 2.4.5 of the data reduction process for Reflectometers (without Monitors) as specified by the document at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a list of file names, a L{hlr_utils.Configure} object, signal and background region-of-interest (ROI) files and an optional flag about background subtraction and processes the data accordingly. @param datalist: The filenames of the data to be processed @type datalist: C{list} of C{string}s @param conf: Object that contains the current setup of the driver @type conf: L{hlr_utils.Configure} @param signal_roi_file: The file containing the list of pixel IDs for the signal region of interest. @type signal_roi_file: C{string} @param bkg_roi_file: The file containing the list of pixel IDs for the (possible) background region of interest. @type bkg_roi_file: C{string} @param no_bkg: (OPTIONAL) Flag which determines if the background will be calculated and subtracted. @type no_bkg: C{boolean} @param kwargs: A list of keyword arguments that the function accepts: @keyword inst_geom_dst: Object that contains the instrument geometry information. @type inst_geom_dst: C{DST.getInstance()} @keyword dataset_type: The practical name of the dataset being processed. The default value is I{data}. @type dataset_type: C{string} @keyword tof_cuts: Time-of-flight bins to remove (zero) from the data @type tof_cuts: C{list} of C{string}s @keyword no_tof_cuts: Flag to stop application of the TOF cuts @type no_tof_cuts: C{boolean} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import common_lib import dr_lib import hlr_utils # Check keywords try: dataset_type = kwargs["dataset_type"] except KeyError: dataset_type = "data" if dataset_type != "data" and dataset_type != "norm": raise RuntimeError("Please use data or norm to specify the dataset "\ +"type. Do not understand how to handle %s." \ % dataset_type) try: t = kwargs["timer"] except KeyError: t = None try: i_geom_dst = kwargs["inst_geom_dst"] except KeyError: i_geom_dst = None try: tof_cuts = kwargs["tof_cuts"] except KeyError: tof_cuts = None no_tof_cuts = kwargs.get("no_tof_cuts", False) so_axis = "time_of_flight" # Step 0: Open data files and select signal (and possible background) ROIs if conf.verbose: print "Reading %s file" % dataset_type if len(conf.norm_data_paths) and dataset_type == "norm": data_path = conf.norm_data_paths.toPath() else: data_path = conf.data_paths.toPath() (d_som1, b_som1) = dr_lib.add_files_bg(datalist, Data_Paths=data_path, SO_Axis=so_axis, dataset_type=dataset_type, Signal_ROI=signal_roi_file, Bkg_ROI=bkg_roi_file, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading %s " % dataset_type) if i_geom_dst is not None: i_geom_dst.setGeometry(conf.data_paths.toPath(), d_som1) # Calculate delta t over t if conf.verbose: print "Calculating delta t over t" dtot = dr_lib.calc_deltat_over_t(d_som1[0].axis[0].val) # Calculate delta theta over theta if conf.verbose: print "Calculating delta theta over theta" dr_lib.calc_delta_theta_over_theta(d_som1, dataset_type) # Step 1: Sum all spectra along the low resolution direction # Set sorting (y_sort, cent_pixel) = hlr_utils.get_ref_integration_direction( conf.int_dir, conf.inst, d_som1.attr_list.instrument) if dataset_type == "data": d_som1.attr_list["ref_sort"] = y_sort d_som1A = dr_lib.sum_all_spectra(d_som1, y_sort=y_sort, stripe=True, pixel_fix=cent_pixel) del d_som1 if b_som1 is not None: b_som1A = dr_lib.sum_all_spectra(b_som1, y_sort=y_sort, stripe=True, pixel_fix=cent_pixel) del b_som1 else: b_som1A = b_som1 # Set the TOF cuts if no_tof_cuts: tof_cut_min = None tof_cut_max = None else: tof_cut_min = conf.tof_cut_min tof_cut_max = conf.tof_cut_max # Cut the spectra if necessary d_som2 = dr_lib.cut_spectra(d_som1A, tof_cut_min, tof_cut_max) del d_som1A if b_som1A is not None: b_som2 = dr_lib.cut_spectra(b_som1A, tof_cut_min, tof_cut_max) del b_som1A else: b_som2 = b_som1A # Fix TOF cuts to make them list of integers try: tof_cuts = [int(x) for x in tof_cuts] # This will trigger if tof_cuts is None except TypeError: pass d_som3 = dr_lib.zero_bins(d_som2, tof_cuts) del d_som2 if b_som2 is not None: b_som3 = dr_lib.zero_bins(b_som2, tof_cuts) del b_som2 else: b_som3 = b_som2 if conf.dump_specular: if no_tof_cuts: d_som3_1 = dr_lib.cut_spectra(d_som3, conf.tof_cut_min, conf.tof_cut_max) else: d_som3_1 = d_som3 hlr_utils.write_file(conf.output, "text/Spec", d_som3_1, output_ext="sdc", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="specular TOF information") del d_som3_1 # Steps 2-4: Determine background spectrum if conf.verbose and not no_bkg: print "Determining %s background" % dataset_type if dataset_type == "data": peak_excl = conf.data_peak_excl elif dataset_type == "norm": peak_excl = conf.norm_peak_excl if b_som3 is not None: B = dr_lib.calculate_ref_background(b_som3, no_bkg, conf.inst, None, aobj=d_som3) else: B = dr_lib.calculate_ref_background(d_som3, no_bkg, conf.inst, peak_excl) if t is not None: t.getTime(msg="After background determination") if not no_bkg and conf.dump_bkg: if no_tof_cuts: B_1 = dr_lib.cut_spectra(B, conf.tof_cut_min, conf.tof_cut_max) else: B_1 = B hlr_utils.write_file(conf.output, "text/Spec", B_1, output_ext="bkg", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="background TOF information") del B_1 # Step 5: Subtract background spectrum from data spectra if not no_bkg: d_som4 = dr_lib.subtract_bkg_from_data(d_som3, B, verbose=conf.verbose, timer=t, dataset1="data", dataset2="background") else: d_som4 = d_som3 del d_som3 if not no_bkg and conf.dump_sub: if no_tof_cuts: d_som4_1 = dr_lib.cut_spectra(d_som4, conf.tof_cut_min, conf.tof_cut_max) else: d_som4_1 = d_som4 hlr_utils.write_file(conf.output, "text/Spec", d_som4_1, output_ext="sub", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="subtracted TOF information") del d_som4_1 dtot_int = dr_lib.integrate_axis_py(dtot, avg=True) param_key = dataset_type + "-dt_over_t" d_som4.attr_list[param_key] = dtot_int[0] if conf.store_dtot: d_som4.attr_list["extra_som"] = dtot # Step 6: Scale by proton charge pc = d_som4.attr_list[dataset_type + "-proton_charge"] pc_new = hlr_utils.scale_proton_charge(pc, "C") d_som5 = common_lib.div_ncerr(d_som4, (pc_new.getValue(), 0.0)) del d_som4 return d_som5