Esempio n. 1
0
def expand_dims(input, axis=None, name=None, dim=None):

    if dim is not None:
        if axis is not None:
            raise ValueError("cannot specify both 'axis' and 'dim'.")
        axis = dim

    return ops.ExpandDims(input, axis=axis, name=name)
Esempio n. 2
0
def expand_dims(input, axis=None, name=None, dim=None):
    """
    Inserts a dimension of 1 into a tensor's shape.

      Given a tensor `input`, this operation inserts a dimension of 1 at the
      dimension index `axis` of `input`'s shape. The dimension index `axis` starts
      at zero; if you specify a negative number for `axis` it is counted backward
      from the end.

      This operation is useful if you want to add a batch dimension to a single
      element. For example, if you have a single image of shape `[height, width,
      channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
      which will make the shape `[1, height, width, channels]`.

      Other examples:

      ```python
      # 't' is a tensor of shape [2]
      shape(expand_dims(t, 0)) ==> [1, 2]
      shape(expand_dims(t, 1)) ==> [2, 1]
      shape(expand_dims(t, -1)) ==> [2, 1]

      # 't2' is a tensor of shape [2, 3, 5]
      shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
      shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
      shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
      ```

      This operation requires that:

      `-1-input.dims() <= dim <= input.dims()`

      This operation is related to `squeeze()`, which removes dimensions of
      size 1.

      Args:
        input: A `Tensor`.
        axis: 0-D (scalar). Specifies the dimension index at which to
          expand the shape of `input`.
        name: The name of the output `Tensor`.
        dim: 0-D (scalar). Equivalent to `axis`, to be deprecated.

      Returns:
        A `Tensor` with the same data as `input`, but its shape has an additional
        dimension of size 1 added.

    """

    if dim is not None:
        if axis is not None:
            raise ValueError("cannot specify both 'axis' and 'dim'.")
        axis = dim

    return ops.ExpandDims(input, axis=axis, name=name)
Esempio n. 3
0
 def LayerSetup(self, bottom):
     return _ops.ExpandDims(bottom, **self.arguments)
Esempio n. 4
0
 def Setup(self, bottom):
     super(ExpandDimsLayer, self).Setup(bottom)
     input = bottom[0] if isinstance(bottom, list) else bottom
     return ops.ExpandDims(input, **self._param)