Esempio n. 1
0
def ones(*sizes, **kwargs):
    """Return a float tensor with values of ``1``.

    Parameters
    ----------
    sizes : tuple, list or int
        The sizes indicating the shape of the output tensor.
    out : vm.torch.Tensor
        The optional output tensor.

    Returns
    -------
    vm.torch.FloatTensor
        The output tensor.

    """
    arguments = {'value': 1.0, 'dims': sizes}
    out = kwargs['out'] if 'out' in kwargs else None
    if out is None:
        out = LeafTensor(sizes, requires_grad=kwargs['requires_grad'] \
            if 'requires_grad' in kwargs else False)
    inputs = []
    outputs = [out]
    ctx = MakeContext(inputs, outputs)
    meta = ('ONCE', 'Fill', ctx)
    return RunOperator(inputs, outputs, meta, **arguments)
Esempio n. 2
0
def zeros_like(input, out=None, **kwargs):
    """Return a float tensor with values of ``0``, shape as the input.

    Parameters
    ----------
    input : vm.torch.Tensor
        The tensor for indicating shape.
    out : vm.torch.Tensor
        The optional output tensor.

    Returns
    -------
    vm.torch.FloatTensor
        The output tensor.

    """
    if not hasattr(input, 'shape'):
        raise ValueError('Input does not have the shape attribute.')
    arguments = {'value': 0.0, 'dims': input.shape}
    if out is None:
        out = LeafTensor(input.shape, requires_grad=kwargs['requires_grad'] \
            if 'requires_grad' in kwargs else False)
    inputs = []
    outputs = [out]
    ctx = MakeContext(inputs, outputs)
    meta = ('ONCE', 'Fill', ctx)
    return RunOperator(inputs, outputs, meta, **arguments)
Esempio n. 3
0
def randn(*sizes, **kwargs):
    """Return a float tensor with a normal distribution of N(0, 1).

    Parameters
    ----------
    sizes : tuple, list or int
        The sizes indicating the shape of the output tensor.
    out : vm.torch.Tensor
        The optional output tensor.

    Returns
    -------
    vm.torch.FloatTensor
        The output tensor.

    """
    arguments = {'mean': 0.0, 'std': 1.0, 'dims': sizes}
    out = kwargs['out'] if 'out' in kwargs else None
    if out is None:
        out = LeafTensor(sizes, requires_grad=kwargs['requires_grad'] \
            if 'requires_grad' in kwargs else False)
    inputs = []
    outputs = [out]
    ctx = MakeContext(inputs, outputs)
    meta = ('ONCE', 'RandomNormal', ctx)
    return RunOperator(inputs, outputs, meta, **arguments)
Esempio n. 4
0
def uniform_(self, low=0, high=1):
    """Fill self tensor with the specified uniform distribution.

    Parameters
    ----------
    low : numerical type
        The lower bound.
    high : numerical type
        The higher bound.

    Returns
    -------
    vm.torch.Tensor
        The self.

    """
    # TODO(PhyscalX): To support various dtypes, not only float32.
    arguments = {'low': float(low), 'high': float(high), 'dims': self.shape}
    inputs = []; outputs = [self]; ctx = MakeContext(inputs, outputs)
    meta = ('ONCE', 'RandomUniform', ctx)
    return RunOperator(inputs, outputs, meta, **arguments)
Esempio n. 5
0
def normal_(self, mean=0, std=1):
    """Fill self tensor with the specified normal distribution.

    Parameters
    ----------
    mean : numerical type
        The mean(mu) of normal distribution.
    std : numerical type
        The std(sigma) of normal distribution.

    Returns
    -------
    vm.torch.Tensor
        The self.

    """
    # TODO(PhyscalX): To support various dtypes, not only float32.
    arguments = {'mean': float(mean), 'std': float(std), 'dims': self.shape}
    inputs = []; outputs = [self]; ctx = MakeContext(inputs, outputs)
    meta = ('ONCE', 'RandomNormal', ctx)
    return RunOperator(inputs, outputs, meta, **arguments)
Esempio n. 6
0
 def run(self, inputs, outputs, auto_grad=True):
     meta = ('PERSISTENT', self.persistent_key, self.op)
     return RunOperator(inputs, outputs, meta, auto_grad=auto_grad)