Esempio n. 1
0
            evals = logit.cdf(logit_odds)

            ev_value = [
                curr_ver,
            ]
            ev_value.extend(ex01.evaluate_ex(next_df, evals))
            ev_values.append(ev_value)

            prm_note.append(curr_ver)
            prm_note.append(best_prms)

    df = pd.DataFrame(ev_values)
    df.columns = ['version', 'nm', 'np', 'nf', 'nc', 'f_value']
    df = df.sort_index(ascending=False)
    df.to_csv('./../result/ex12/record_ex12_' + mdl_typ + '_' +
              str(THRESHOLD) + '.csv',
              index=False,
              cols=None)
    df = pd.DataFrame(prm_note)
    df.to_csv('./../result/ex12/prm_note_' + mdl_typ + '.csv',
              index=False,
              cols=None)


if __name__ == '__main__':
    # ex1(0.5)
    ex12_short('nml')
    ex12_short('rfn')
    ex12_short('chrn')
    fig.draw_graph(12)
Esempio n. 2
0
            # create model used evaluatopn_ex
            next_df = mmm.create_df(next_ver)
            # explanatory value
            ev_data = next_df[list(best_prms)]

            # operate evaluation_ex
            logit_odds = ev_data.dot(coef)
            evals = logit.cdf(logit_odds)

            ev_value = [curr_ver,]
            ev_value.extend( ex01.evaluate_ex(next_df, evals) )
            ev_values.append(ev_value)

            prm_note.append(curr_ver)
            prm_note.append(best_prms)

    df = pd.DataFrame(ev_values)
    df.columns = ['version','nm','np','nf','nc','f_value']
    df = df.sort_index(ascending=False)
    df.to_csv( './../result/ex12/record_ex12_' + mdl_typ + '_' + str(THRESHOLD) + '.csv', index=False, cols=None)
    df = pd.DataFrame(prm_note)
    df.to_csv( './../result/ex12/prm_note_'+mdl_typ+'.csv', index=False, cols=None)

if __name__ == '__main__':
    # ex1(0.5)
    ex12_short('nml')
    ex12_short('rfn')
    ex12_short('chrn')
    fig.draw_graph(12)
Esempio n. 3
0
            logit_odds = ev_data.dot(coef)
            # print logit_odds
            evals = logit.cdf(logit_odds)
            # print evals

            ev_value = [
                curr_ver,
            ]
            # ev_value.extend( ex01.evaluate_ex(next_df, evals, mdl_typ,curr_ver) )
            ev_value.extend(ex01.evaluate_ex(next_df, evals))

            ev_values.append(ev_value)

    df = pd.DataFrame(ev_values)
    df.columns = ['version', 'nm', 'np', 'nf', 'nc', 'f_value']
    df = df.sort_index(ascending=False)
    df.to_csv('./../result/ex2/record_ex2_' + mdl_typ + '_' + str(THRESHOLD) +
              '.csv',
              index=False,
              cols=None)


if __name__ == '__main__':
    # ex2_short('nml', 0.3)
    # ex2_short('rfn', 0.3)
    ex2_short('nml', 0.5)
    ex2_short('rfn', 0.5)
    ex2_short('chrn', 0.5)

    fig.draw_graph(2)
Esempio n. 4
0
            # create model used evaluatopn_ex
            ev_data = next_df[ref_prms]
            # normalize
            ev_data = ev_data.div(ev_data.sum(1), axis=0)

            # operate evaluation_ex
            logit_odds = ev_data.dot(coef)
            evals = logit.cdf(logit_odds)

            ev_value = [
                curr_ver,
            ]
            ev_value.extend(ex01.evaluate_ex(next_df, evals))
            ev_values_ref.append(ev_value)

    df = pd.DataFrame(ev_values_nml)
    df.columns = ['version', 'nm', 'np', 'nf', 'nc', 'f_value']
    df.to_csv('./../result/ex3/record_ex3_nml_' + str(THRESHOLD) + '.csv',
              index=False,
              cols=None)
    df = pd.DataFrame(ev_values_ref)
    df.columns = ['version', 'nm', 'np', 'nf', 'nc', 'f_value']
    df.to_csv('./../result/ex3/record_ex3_rfn_' + str(THRESHOLD) + '.csv',
              index=False,
              cols=None)


if __name__ == '__main__':
    ex3(0.5)
    fig.draw_graph(3)
Esempio n. 5
0
            # create model used evaluatopn_ex
            next_df = mmm.create_df(next_ver)
            # explanatory value
            ev_data = next_df[list(best_prms)]

            # operate evaluation_ex
            logit_odds = ev_data.dot(coef)
            evals = logit.cdf(logit_odds)

            ev_value = [curr_ver,]
            ev_value.extend( ex01.evaluate_ex(next_df, evals) )
            ev_values.append(ev_value)

            prm_note.append(curr_ver)
            prm_note.append(best_prms)

    df = pd.DataFrame(ev_values)
    df.columns = ['version','nm','np','nf','nc','f_value']
    df = df.sort_index(ascending=False)
    df.to_csv( './../result/ex11/record_ex11_' + mdl_typ + '_' + str(THRESHOLD) + '.csv', index=False, cols=None)
    df = pd.DataFrame(prm_note)
    df.to_csv( './../result/ex11/prm_note_'+mdl_typ+'.csv', index=False, cols=None)

if __name__ == '__main__':
    # ex1(0.5)
    ex11_short('nml')
    ex11_short('rfn')
    ex11_short('chrn')
    fig.draw_graph(11)
Esempio n. 6
0
            # get coefficients
            params = result.params.values
            coef = pd.Series(params, index=ref_prms)

            # create model used evaluatopn_ex
            ev_data = next_df[ref_prms]
            # normalize
            ev_data = ev_data.div(ev_data.sum(1),axis=0)


            # operate evaluation_ex
            logit_odds = ev_data.dot(coef)
            evals = logit.cdf(logit_odds)

            ev_value = [curr_ver,]
            ev_value.extend( ex01.evaluate_ex(next_df, evals) )
            ev_values_ref.append(ev_value)



    df = pd.DataFrame(ev_values_nml)
    df.columns = ['version','nm','np','nf','nc','f_value']
    df.to_csv( './../result/ex3/record_ex3_nml_' + str(THRESHOLD) +'.csv', index=False, cols=None)
    df = pd.DataFrame(ev_values_ref)
    df.columns = ['version','nm','np','nf','nc','f_value']
    df.to_csv( './../result/ex3/record_ex3_rfn_' + str(THRESHOLD) +'.csv', index=False, cols=None)

if __name__ == '__main__':
    ex3(0.5)
    fig.draw_graph(3)
Esempio n. 7
0
            evals = logit.cdf(logit_odds)

            ev_value = [
                curr_ver,
            ]
            ev_value.extend(ex01.evaluate_ex(next_df, evals))
            ev_values.append(ev_value)

            prm_note.append(curr_ver)
            prm_note.append(best_prms)

    df = pd.DataFrame(ev_values)
    df.columns = ['version', 'nm', 'np', 'nf', 'nc', 'f_value']
    df = df.sort_index(ascending=False)
    df.to_csv('./../result/ex11/record_ex11_' + mdl_typ + '_' +
              str(THRESHOLD) + '.csv',
              index=False,
              cols=None)
    df = pd.DataFrame(prm_note)
    df.to_csv('./../result/ex11/prm_note_' + mdl_typ + '.csv',
              index=False,
              cols=None)


if __name__ == '__main__':
    # ex1(0.5)
    ex11_short('nml')
    ex11_short('rfn')
    ex11_short('chrn')
    fig.draw_graph(11)
Esempio n. 8
0
            # create model used evaluatopn_ex
            next_df = mm.create_df(next_ver)
            # explanatory value
            ev_data = next_df[list(best_prms)]

            # operate evaluation_ex
            logit_odds = ev_data.dot(coef)
            evals = logit.cdf(logit_odds)

            ev_value = [
                curr_ver,
            ]
            ev_value.extend(ex01.evaluate_ex(next_df, evals))
            ev_values.append(ev_value)

    df = pd.DataFrame(ev_values)
    df.columns = ['version', 'nm', 'np', 'nf', 'nc', 'f_value']
    df = df.sort_index(ascending=False)
    df.to_csv('./../result/ex4/record_ex4_' + mdl_typ + '_' + str(THRESHOLD) +
              '.csv',
              index=False,
              cols=None)


if __name__ == '__main__':
    # ex1(0.5)
    ex4_short('nml')
    ex4_short('rfn')
    ex4_short('chrn')
    fig.draw_graph(4)
Esempio n. 9
0
import ex01
import ex02
import draw_figure as fig
ex01.ex1(0.5)
fig.draw_graph(1)
ex02.ex1(0.5)
fig.draw_graph(2)
fig.draw_grph(1.2,1,'rfn',2,'rfn')
Esempio n. 10
0
            # get coefficients
            params = result.params.values
            coef = pd.Series(params, index=best_prms)
            # print coef

            # create model used evaluatopn_ex
            next_df = mm.create_df(next_ver)
            # explanatory value
            ev_data = next_df[list(best_prms)]

            # operate evaluation_ex
            logit_odds = ev_data.dot(coef)
            evals = logit.cdf(logit_odds)

            ev_value = [curr_ver,]
            ev_value.extend( ex01.evaluate_ex(next_df, evals) )
            ev_values.append(ev_value)


    df = pd.DataFrame(ev_values)
    df.columns = ['version','nm','np','nf','nc','f_value']
    df = df.sort_index(ascending=False)
    df.to_csv( './../result/ex4/record_ex4_' + mdl_typ + '_' + str(THRESHOLD) + '.csv', index=False, cols=None)

if __name__ == '__main__':
    # ex1(0.5)
    ex4_short('nml')
    ex4_short('rfn')
    ex4_short('chrn')
    fig.draw_graph(4)