# On a grid. if 1: #x_vals[j] = 10.0 + 10.0*(j%23) #y_vals[j] = 10.0 + 10.0*math.floor(float(j)/23.0) x_vals[j] = 20.0 + 20.0 * (j % 10) y_vals[j] = 20.0 + 20.0 * math.floor(float(j) / 10.0) z_off = -0.5 + float(j) / float(num_objects - 1) #z_off = -0.4 + 0.8 * float(j)/float(num_objects - 1) #z_off = 0.0 z_vals[j] = z_off * 1000.0 # Generate objects. objects = PSF.PSF(x_vals, y_vals, z_vals, h_vals) # Draw the image. image = dg.drawGaussians([x_size, y_size], objects, background=50, res=5) #image = dg.drawGaussians([x_size, y_size], objects, background = 0, res = 5) #image[0:(x_size/2),:] += 50 # Add poisson noise and baseline. image = numpy.random.poisson(image) + 100.0 # Save the image. dax_data.addFrame(image) # Save the molecule locations. a_vals = PSF.PSFIntegral(z_vals, h_vals) ax = numpy.ones(num_objects) ww = 2.0 * 160.0 * numpy.ones(num_objects) if (PSF.psf_type == "astigmatic"):
# On a grid. if 1: #x_vals[j] = 10.0 + 10.0*(j%23) #y_vals[j] = 10.0 + 10.0*math.floor(float(j)/23.0) x_vals[j] = 20.0 + 20.0*(j%10) y_vals[j] = 20.0 + 20.0*math.floor(float(j)/10.0) z_off = -0.5 + float(j)/float(num_objects - 1) #z_off = -0.4 + 0.8 * float(j)/float(num_objects - 1) #z_off = 0.0 z_vals[j] = z_off * 1000.0 # Generate objects. objects = PSF.PSF(x_vals, y_vals, z_vals, h_vals) # Draw the image. image = dg.drawGaussians([x_size, y_size], objects, background = 50, res = 5) #image = dg.drawGaussians([x_size, y_size], objects, background = 0, res = 5) #image[0:(x_size/2),:] += 50 # Add poisson noise and baseline. image = numpy.random.poisson(image) + 100.0 # Save the image. dax_data.addFrame(image) # Save the molecule locations. a_vals = PSF.PSFIntegral(z_vals, h_vals) ax = numpy.ones(num_objects) ww = 2.0 * 160.0 * numpy.ones(num_objects) if (PSF.psf_type == "astigmatic"):