Esempio n. 1
0
def clip_project_raster_func(input_raster, resampling_type, input_osr,
                             input_cs, input_extent, ouput_osr, output_cs,
                             output_extent):
    """Clip and then project an input raster"""
    # Read array from input raster using input extent
    input_array = drigo.raster_to_array(input_raster,
                                        1,
                                        input_extent,
                                        return_nodata=False)
    # Project and clip array to block
    output_array = drigo.project_array(input_array, resampling_type, input_osr,
                                       input_cs, input_extent, ouput_osr,
                                       output_cs, output_extent)
    return output_array
        def metric_weather_func(output_raster, input_ws, input_re,
                                prev_dt, next_dt,
                                resample_method=gdal.GRA_NearestNeighbour,
                                rounding_flag=False):
            """Interpolate/project/clip METRIC hourly rasters"""
            logging.debug('    Output: {}'.format(output_raster))
            if os.path.isfile(output_raster):
                if overwrite_flag:
                    logging.debug('    Overwriting output')
                    dripy.remove_file(output_raster)
                else:
                    logging.debug('    Skipping, file already exists ' +
                                  'and overwrite is False')
                    return False
            prev_ws = os.path.join(input_ws, str(prev_dt.year))
            next_ws = os.path.join(input_ws, str(next_dt.year))

            # Technically previous and next could come from different days
            # or even years, although this won't happen in the U.S.
            try:
                prev_path = [
                    os.path.join(prev_ws, input_name)
                    for input_name in os.listdir(prev_ws)
                    for input_match in [input_re.match(input_name)]
                    if (input_match and
                        (prev_dt.strftime('%Y%m%d') ==
                         input_match.group('YYYYMMDD')))][0]
                logging.debug('    Input prev: {}'.format(prev_path))
            except IndexError:
                logging.error('  No previous hourly file')
                logging.error('    {}'.format(prev_dt))
                return False
            try:
                next_path = [
                    os.path.join(next_ws, input_name)
                    for input_name in os.listdir(next_ws)
                    for input_match in [input_re.match(input_name)]
                    if (input_match and
                        (next_dt.strftime('%Y%m%d') ==
                         input_match.group('YYYYMMDD')))][0]
                logging.debug('    Input next: {}'.format(next_path))
            except IndexError:
                logging.error('  No next hourly file')
                logging.error('    {}'.format(next_dt))
                return False

            # Band numbers are 1's based
            prev_band = int(prev_dt.strftime('%H')) + 1
            next_band = int(next_dt.strftime('%H')) + 1
            logging.debug('    Input prev band: {}'.format(prev_band))
            logging.debug('    Input next band: {}'.format(next_band))

            # Read arrays
            prev_array = drigo.raster_to_array(
                prev_path, band=prev_band, mask_extent=common_gcs_extent,
                return_nodata=False)
            next_array = drigo.raster_to_array(
                next_path, band=next_band, mask_extent=common_gcs_extent,
                return_nodata=False)
            if not np.any(prev_array) or not np.any(next_array):
                logging.warning('\nWARNING: Input NLDAS array is all nodata\n')
                return None

            output_array = hourly_interpolate_func(
                prev_array, next_array,
                prev_dt, next_dt, image.acq_datetime)
            output_array = drigo.project_array(
                output_array, resample_method,
                input_osr, input_cs, common_gcs_extent,
                common_osr, env.cellsize, common_extent, output_nodata=None)

            # Apply common area mask
            output_array[~common_array] = np.nan

            # Reduce the file size by rounding to the nearest n digits
            if rounding_flag:
                output_array = np.around(output_array, rounding_digits)
            # Force output to 32-bit float
            drigo.array_to_raster(
                output_array.astype(np.float32), output_raster,
                output_geo=common_geo, output_proj=common_proj,
                stats_flag=stats_flag)
            del output_array
            return True
def main(image_ws, ini_path, bs=2048, stats_flag=False, overwrite_flag=False):
    """Prep a Landsat scene for METRIC

    Parameters
    ----------
    image_ws : str
        Landsat scene folder that will be prepped.
    ini_path : str
        File path of the input parameters file.
    bs : int, optional
        Processing block size (the default is 2048).
    stats_flag : bool, optional
        If True, compute raster statistics (the default is True).
    overwrite_flag : bool, optional
        If True, overwrite existing files (the default is False).

    Returns
    -------
    True is successful

    """

    # Open config file
    config = dripy.open_ini(ini_path)

    # Get input parameters
    logging.debug('  Reading Input File')
    calc_refl_toa_flag = dripy.read_param(
        'calc_refl_toa_flag', True, config, 'INPUTS')
    calc_refl_toa_qa_flag = dripy.read_param(
        'calc_refl_toa_qa_flag', True, config, 'INPUTS')
    # calc_refl_sur_ledaps_flag = dripy.read_param(
    #     'calc_refl_sur_ledaps_flag', False, config, 'INPUTS')
    # calc_refl_sur_qa_flag = dripy.read_param(
    #     'calc_refl_sur_qa_flag', False, config, 'INPUTS')
    calc_ts_bt_flag = dripy.read_param(
        'calc_ts_bt_flag', True, config, 'INPUTS')

    # Use QA band to set common area
    # Fmask cloud, shadow, & snow pixels will be removed from common area
    calc_fmask_common_flag = dripy.read_param(
        'calc_fmask_common_flag', True, config, 'INPUTS')
    fmask_smooth_flag = dripy.read_param(
        'fmask_smooth_flag', False, config, 'INPUTS')
    fmask_buffer_flag = dripy.read_param(
        'fmask_buffer_flag', False, config, 'INPUTS')
    fmask_erode_flag = dripy.read_param(
        'fmask_erode_flag', False, config, 'INPUTS')
    if fmask_smooth_flag:
        fmask_smooth_cells = int(dripy.read_param(
            'fmask_smooth_cells', 1, config, 'INPUTS'))
        if fmask_smooth_cells == 0 and fmask_smooth_flag:
            fmask_smooth_flag = False
    if fmask_erode_flag:
        fmask_erode_cells = int(dripy.read_param(
            'fmask_erode_cells', 1, config, 'INPUTS'))
        if fmask_erode_cells == 0 and fmask_erode_flag:
            fmask_erode_flag = False
    if fmask_buffer_flag:
        fmask_buffer_cells = int(dripy.read_param(
            'fmask_buffer_cells', 1, config, 'INPUTS'))
        if fmask_buffer_cells == 0 and fmask_buffer_flag:
            fmask_buffer_flag = False

    # Remove edge (fringe) cells
    edge_smooth_flag = dripy.read_param(
        'edge_smooth_flag', True, config, 'INPUTS')

    # Include hand made cloud masks
    cloud_mask_flag = dripy.read_param(
        'cloud_mask_flag', False, config, 'INPUTS')
    cloud_mask_ws = ""
    if cloud_mask_flag:
        cloud_mask_ws = config.get('INPUTS', 'cloud_mask_ws')

    # Extract separate Fmask rasters
    calc_fmask_flag = dripy.read_param(
        'calc_fmask_flag', True, config, 'INPUTS')
    calc_fmask_cloud_flag = dripy.read_param(
        'calc_fmask_cloud_flag', True, config, 'INPUTS')
    calc_fmask_snow_flag = dripy.read_param(
        'calc_fmask_snow_flag', True, config, 'INPUTS')
    calc_fmask_water_flag = dripy.read_param(
        'calc_fmask_water_flag', True, config, 'INPUTS')

    # Keep Landsat DN, LEDAPS, and Fmask rasters
    keep_dn_flag = dripy.read_param(
        'keep_dn_flag', True, config, 'INPUTS')
    # keep_sr_flag = dripy.read_param(
    #     'keep_sr_flag', True, config, 'INPUTS')

    # For this to work I would need to pass in the metric input file
    # calc_elev_flag = dripy.read_param(
    #     'calc_elev_flag', False, config, 'INPUTS')
    # calc_landuse_flag = dripy.read_param(
    #     'calc_landuse_flag', False, config, 'INPUTS')

    # calc_acca_cloud_flag = dripy.read_param(
    #     'calc_acca_cloud_flag', True, config, 'INPUTS')
    # calc_acca_snow_flag = dripy.read_param(
    #     'calc_acca_snow_flag', True, config, 'INPUTS')
    # calc_ledaps_dem_land_flag = dripy.read_param(
    #     'calc_ledaps_dem_land_flag', False, config, 'INPUTS')
    # calc_ledaps_veg_flag = dripy.read_param(
    #     'calc_ledaps_veg_flag', False, config, 'INPUTS')
    # calc_ledaps_snow_flag = dripy.read_param(
    #     'calc_ledaps_snow_flag', False, config, 'INPUTS')
    # calc_ledaps_land_flag = dripy.read_param(
    #     'calc_ledaps_land_flag', False, config, 'INPUTS')
    # calc_ledaps_cloud_flag = dripy.read_param(
    #     'calc_ledaps_cloud_flag', False, config, 'INPUTS')

    # Interpolate/clip/project hourly rasters for each Landsat scene
    # calc_metric_flag = dripy.read_param(
    #     'calc_metric_flag', False, config, 'INPUTS')
    calc_metric_ea_flag = dripy.read_param(
        'calc_metric_ea_flag', False, config, 'INPUTS')
    calc_metric_wind_flag = dripy.read_param(
        'calc_metric_wind_flag', False, config, 'INPUTS')
    calc_metric_etr_flag = dripy.read_param(
        'calc_metric_etr_flag', False, config, 'INPUTS')
    calc_metric_tair_flag = dripy.read_param(
        'calc_metric_tair_flag', False, config, 'INPUTS')

    # Interpolate/clip/project AWC and daily ETr/PPT rasters
    # to compute SWB Ke for each Landsat scene
    calc_swb_ke_flag = dripy.read_param(
        'calc_swb_ke_flag', False, config, 'INPUTS')
    if cloud_mask_flag:
        spinup_days = dripy.read_param(
            'swb_spinup_days', 30, config, 'INPUTS')
        min_spinup_days = dripy.read_param(
            'swb_min_spinup_days', 5, config, 'INPUTS')

    # Round ea raster to N digits to save space
    rounding_digits = dripy.read_param(
        'rounding_digits', 3, config, 'INPUTS')

    env = drigo.env
    image = et_image.Image(image_ws, env)
    np.seterr(invalid='ignore', divide='ignore')
    gdal.UseExceptions()

    # Input file paths
    dn_image_dict = et_common.landsat_band_image_dict(
        image.orig_data_ws, image.image_name_re)

    # # Open METRIC config file
    # if config_file:
    #    logging.info(
    #        log_f.format('METRIC INI File:', os.path.basename(config_file)))
    #    config = configparser.ConfigParser()
    #    try:
    #        config.read(config_file)
    #    except:
    #        logging.error('\nERROR: Config file could not be read, ' +
    #                      'is not an input file, or does not exist\n' +
    #                      'ERROR: config_file = {}\n').format(config_file)
    #        sys.exit()
    #    #  Overwrite
    #    overwrite_flag = dripy.read_param('overwrite_flag', True, config)
    #
    #    #  Elevation and landuse parameters/flags from METRIC input file
    #    calc_elev_flag = dripy.read_param('save_dem_raster_flag', True, config)
    #    calc_landuse_flag = dripy.read_param(
    #        'save_landuse_raster_flag', True, config)
    #    if calc_elev_flag:
    #        elev_pr_path = config.get('INPUTS','dem_raster')
    #    if calc_landuse_flag:
    #        landuse_pr_path = config.get('INPUTS', 'landuse_raster')
    # else:
    #    overwrite_flag = False
    #    calc_elev_flag = False
    #    calc_landuse_flag = False
    #
    # Elev raster must exist
    # if calc_elev_flag and not os.path.isfile(elev_pr_path):
    #    logging.error('\nERROR: Elevation raster {} does not exist\n'.format(
    #        elev_pr_path))
    #    return False
    # Landuse raster must exist
    # if calc_landuse_flag and not os.path.isfile(landuse_pr_path):
    #    logging.error('\nERROR: Landuse raster {} does not exist\n'.format(
    #        landuse_pr_path))
    #    return False

    # Removing ancillary files before checking for inputs
    if os.path.isdir(os.path.join(image.orig_data_ws, 'gap_mask')):
        shutil.rmtree(os.path.join(image.orig_data_ws, 'gap_mask'))
    for item in os.listdir(image.orig_data_ws):
        if (image.type == 'Landsat7' and
            (item.endswith('_B8.TIF') or
             item.endswith('_B6_VCID_2.TIF'))):
            os.remove(os.path.join(image.orig_data_ws, item))
        elif (image.type == 'Landsat8' and
              (item.endswith('_B1.TIF') or
               item.endswith('_B8.TIF') or
               item.endswith('_B9.TIF') or
               item.endswith('_B11.TIF'))):
            os.remove(os.path.join(image.orig_data_ws, item))
        elif (item.endswith('_VER.jpg') or
              item.endswith('_VER.txt') or
              item.endswith('_GCP.txt') or
              item == 'README.GTF'):
            os.remove(os.path.join(image.orig_data_ws, item))

    # Check correction level (image must be L1T to process)
    if image.correction != 'L1TP':
        logging.debug('  Image is not L1TP corrected, skipping')
        return False
        # calc_fmask_common_flag = False
        # calc_refl_toa_flag = False
        # calc_ts_bt_flag = False
        # calc_metric_ea_flag = False
        # calc_metric_wind_flag = False
        # calc_metric_etr_flag = False
        # overwrite_flag = False

    # QA band must exist
    if calc_fmask_common_flag and image.qa_band not in dn_image_dict.keys():
        logging.warning(
             '\nQA band does not exist but calc_fmask_common_flag=True'
             '\n  Setting calc_fmask_common_flag=False\n  {}'.format(
                 image.qa_band))
        calc_fmask_common_flag = False
    if cloud_mask_flag and not os.path.isdir(cloud_mask_ws):
        logging.warning(
             '\ncloud_mask_ws is not a directory but cloud_mask_flag=True.'
             '\n  Setting cloud_mask_flag=False\n   {}'.format(cloud_mask_ws))
        cloud_mask_flag = False

    # Check for Landsat TOA images
    if (calc_refl_toa_flag and
        (set(list(image.band_toa_dict.keys()) +
                 [image.thermal_band, image.qa_band]) !=
            set(dn_image_dict.keys()))):
        logging.warning(
            '\nMissing Landsat images but calc_refl_toa_flag=True'
            '\n  Setting calc_refl_toa_flag=False')
        calc_refl_toa_flag = False

    # Check for Landsat brightness temperature image
    if calc_ts_bt_flag and image.thermal_band not in dn_image_dict.keys():
        logging.warning(
            '\nThermal band image does not exist but calc_ts_bt_flag=True'
            '\n  Setting calc_ts_bt_flag=False')
        calc_ts_bt_flag = False
        # DEADBEEF - Should the function return False if Ts doesn't exist?
        # return False

    # Check for METRIC hourly/daily input folders
    if calc_metric_ea_flag:
        metric_ea_input_ws = config.get('INPUTS', 'metric_ea_input_folder')
        if not os.path.isdir(metric_ea_input_ws):
            logging.warning(
                 '\nHourly Ea folder does not exist but calc_metric_ea_flag=True'
                 '\n  Setting calc_metric_ea_flag=False\n  {}'.format(
                     metric_ea_input_ws))
            calc_metric_ea_flag = False
    if calc_metric_wind_flag:
        metric_wind_input_ws = config.get('INPUTS', 'metric_wind_input_folder')
        if not os.path.isdir(metric_wind_input_ws):
            logging.warning(
                 '\nHourly wind folder does not exist but calc_metric_wind_flag=True'
                 '\n  Setting calc_metric_wind_flag=False\n  {}'.format(
                     metric_wind_input_ws))
            calc_metric_wind_flag = False
    if calc_metric_etr_flag:
        metric_etr_input_ws = config.get('INPUTS', 'metric_etr_input_folder')
        if not os.path.isdir(metric_etr_input_ws):
            logging.warning(
                 '\nHourly ETr folder does not exist but calc_metric_etr_flag=True'
                 '\n  Setting calc_metric_etr_flag=False\n  {}'.format(
                     metric_etr_input_ws))
            calc_metric_etr_flag = False
    if calc_metric_tair_flag:
        metric_tair_input_ws = config.get('INPUTS', 'metric_tair_input_folder')
        if not os.path.isdir(metric_tair_input_ws):
            logging.warning(
                 '\nHourly Tair folder does not exist but calc_metric_tair_flag=True'
                 '\n  Setting calc_metric_tair_flag=False\n  {}'.format(
                     metric_tair_input_ws))
            calc_metric_tair_flag = False
    if (calc_metric_ea_flag or calc_metric_wind_flag or
            calc_metric_etr_flag or calc_metric_tair_flag):
        metric_hourly_re = re.compile(config.get('INPUTS', 'metric_hourly_re'))
        metric_daily_re = re.compile(config.get('INPUTS', 'metric_daily_re'))

    if calc_swb_ke_flag:
        awc_input_path = config.get('INPUTS', 'awc_input_path')
        etr_input_ws = config.get('INPUTS', 'etr_input_folder')
        ppt_input_ws = config.get('INPUTS', 'ppt_input_folder')
        etr_input_re = re.compile(config.get('INPUTS', 'etr_input_re'))
        ppt_input_re = re.compile(config.get('INPUTS', 'ppt_input_re'))
        if not os.path.isfile(awc_input_path):
            logging.warning(
                 '\nAWC raster does not exist but calc_swb_ke_flag=True'
                 '\n  Setting calc_swb_ke_flag=False\n  {}'.format(
                     awc_input_path))
            calc_swb_ke_flag = False
        if not os.path.isdir(etr_input_ws):
            logging.warning(
                 '\nDaily ETr folder does not exist but calc_swb_ke_flag=True'
                 '\n  Setting calc_swb_ke_flag=False\n  {}'.format(
                     etr_input_ws))
            calc_swb_ke_flag = False
        if not os.path.isdir(ppt_input_ws):
            logging.warning(
                 '\nDaily PPT folder does not exist but calc_swb_ke_flag=True'
                 '\n  Setting calc_swb_ke_flag=False\n  {}'.format(
                     ppt_input_ws))
            calc_swb_ke_flag = False

    # Build folders for support rasters
    if ((calc_fmask_common_flag or calc_refl_toa_flag or
         # calc_refl_sur_ledaps_flag or
         calc_ts_bt_flag or
         calc_metric_ea_flag or calc_metric_wind_flag or
         calc_metric_etr_flag or calc_metric_tair_flag or
         calc_swb_ke_flag) and
        not os.path.isdir(image.support_ws)):
        os.makedirs(image.support_ws)
    if calc_refl_toa_flag and not os.path.isdir(image.refl_toa_ws):
        os.makedirs(image.refl_toa_ws)
    # if calc_refl_sur_ledaps_flag and not os.path.isdir(image.refl_sur_ws):
    #     os.makedirs(image.refl_sur_ws)

    # DEADBEEF - This is being further down just for the Fmask images
    # # Apply overwrite flag
    # if overwrite_flag:
    #     overwrite_list = [
    #         image.fmask_cloud_raster, image.fmask_snow_raster,
    #         image.fmask_water_raster
    #         # image.elev_raster, image.landuse_raster
    #         # image.common_area_raster
    #     ]
    #     for overwrite_path in overwrite_list:
    #         try:
    #             dripy.remove_file(image.fmask_cloud_raster)
    #         except:
    #             pass

    # Use QA band to build common area rasters
    logging.info('\nCommon Area Raster')
    qa_ds = gdal.Open(dn_image_dict[image.qa_band], 0)
    common_geo = drigo.raster_ds_geo(qa_ds)
    common_extent = drigo.raster_ds_extent(qa_ds)
    common_proj = drigo.raster_ds_proj(qa_ds)
    common_osr = drigo.raster_ds_osr(qa_ds)
    # Initialize common_area as all non-fill QA values
    qa_array = drigo.raster_ds_to_array(qa_ds, return_nodata=False)
    common_array = qa_array != 1
    common_rows, common_cols = common_array.shape
    del qa_ds

    # Erode and dilate to remove fringe on edge
    # Default is to not smooth, but user can force smoothing
    # This needs to be applied before Fmask
    if edge_smooth_flag and image.prefix in ['LT05', 'LE07']:
        struct = ndimage.generate_binary_structure(2, 2).astype(np.uint8)
        if image.prefix == 'LT05':
            cells = 8
        elif image.prefix == 'LE07':
            cells = 2
        else:
            cells = 0
        common_array = ndimage.binary_dilation(
            ndimage.binary_erosion(common_array, struct, cells),
            struct, cells)

    # Try applying user defined cloud masks to common_area
    cloud_mask_path = os.path.join(
        cloud_mask_ws, image.folder_id + '_mask.shp')
    if cloud_mask_flag and os.path.isfile(cloud_mask_path):
        logging.info('  Applying cloud mask shapefile')
        feature_path = os.path.join(
            cloud_mask_ws, (image.folder_id + '_mask.shp'))
        logging.info('    {}'.format(feature_path))
        cloud_mask_memory_ds = drigo.polygon_to_raster_ds(
            feature_path, nodata_value=0, burn_value=1,
            output_osr=common_osr, output_cs=30,
            output_extent=common_extent)
        cloud_array = drigo.raster_ds_to_array(
            cloud_mask_memory_ds, return_nodata=False)
        # DEADBEEF - If user sets a cloud mask,
        #   it is probably better than Fmask
        # Eventually change "if" calc_fmask_common_flag: to "elif"
        common_array[cloud_array == 1] = 0
        del cloud_mask_memory_ds, cloud_array

    # Remove Fmask cloud, shadow, and snow pixels from common_area
    if calc_fmask_common_flag:
        logging.info('  Applying Fmask to common area')
        fmask_array = et_numpy.bqa_fmask_func(qa_array)
        fmask_mask = (fmask_array >= 2) & (fmask_array <= 4)

        if fmask_smooth_flag:
            logging.debug(
                '  Smoothing (dilate/erode/erode/dilate) Fmask clouds, shadows,'
                ' and snow pixels by {} cells'.format(fmask_smooth_cells))
            # ArcGIS smoothing procedure
            fmask_mask = ndimage.binary_dilation(
                fmask_mask, iterations=fmask_smooth_cells,
                structure=ndimage.generate_binary_structure(2, 2))
            fmask_mask = ndimage.binary_erosion(
                fmask_mask, iterations=fmask_smooth_cells,
                structure=ndimage.generate_binary_structure(2, 2))
            fmask_mask = ndimage.binary_erosion(
                fmask_mask, iterations=fmask_smooth_cells,
                structure=ndimage.generate_binary_structure(2, 2))
            fmask_mask = ndimage.binary_dilation(
                fmask_mask, iterations=fmask_smooth_cells,
                structure=ndimage.generate_binary_structure(2, 2))

        if fmask_erode_flag:
            logging.debug(
                '  Eroding Fmask clouds, shadows, and snow pixels by '
                '{} cells'.format(fmask_erode_cells))
            fmask_mask = ndimage.binary_erosion(
                fmask_mask, iterations=fmask_erode_cells,
                structure=ndimage.generate_binary_structure(2, 2))

        if fmask_buffer_flag:
            logging.debug(
                '  Dilating (buffering) Fmask clouds, shadows, and snow pixels '
                'by {} cells'.format(fmask_buffer_cells))
            fmask_mask = ndimage.binary_dilation(
                fmask_mask, iterations=fmask_buffer_cells,
                structure=ndimage.generate_binary_structure(2, 2))

        # Reset common_array for buffered cells
        common_array[fmask_mask] = 0

        del fmask_array, fmask_mask

    # Check that there are some cloud free pixels
    if not np.any(common_array):
        logging.error(
            '  ERROR: There are no cloud/snow free pixels, returning False')
        return False

    # Always overwrite common area raster
    # if not os.path.isfile(image.common_area_raster):
    drigo.array_to_raster(
        common_array, image.common_area_raster,
        output_geo=common_geo, output_proj=common_proj,
        stats_flag=stats_flag)

    # Print common geo/extent
    logging.debug('  Common geo:      {}'.format(common_geo))
    logging.debug('  Common extent:   {}'.format(common_extent))

    # Extract Fmask components as separate rasters
    if (calc_fmask_flag or calc_fmask_cloud_flag or calc_fmask_snow_flag or
            calc_fmask_water_flag):
        logging.info('\nFmask')
        fmask_array = et_numpy.bqa_fmask_func(qa_array)

        # Remove existing Fmask rasters
        if (calc_fmask_flag and overwrite_flag and
                os.path.isfile(image.fmask_output_raster)):
            logging.debug('  Overwriting: {}'.format(
                image.fmask_output_raster))
            dripy.remove_file(image.fmask_output_raster)
        if (calc_fmask_cloud_flag and overwrite_flag and
                os.path.isfile(image.fmask_cloud_raster)):
            logging.debug('  Overwriting: {}'.format(
                image.fmask_cloud_raster))
            dripy.remove_file(image.fmask_cloud_raster)
        if (calc_fmask_snow_flag and overwrite_flag and
                os.path.isfile(image.fmask_snow_raster)):
            logging.debug('  Overwriting: {}'.format(
                image.fmask_snow_raster))
            dripy.remove_file(image.fmask_snow_raster)
        if (calc_fmask_water_flag and overwrite_flag and
                os.path.isfile(image.fmask_water_raster)):
            logging.debug('  Overwriting: {}'.format(
                image.fmask_water_raster))
            dripy.remove_file(image.fmask_water_raster)

        # Save Fmask data as separate rasters
        if (calc_fmask_flag and not os.path.isfile(image.fmask_output_raster)):
            logging.debug('  Saving Fmask raster')
            drigo.array_to_raster(
                fmask_array.astype(np.uint8), image.fmask_output_raster,
                output_geo=common_geo, output_proj=common_proj,
                mask_array=None, output_nodata=255, stats_flag=stats_flag)
        if (calc_fmask_cloud_flag and
                not os.path.isfile(image.fmask_cloud_raster)):
            logging.debug('  Saving Fmask cloud raster')
            fmask_cloud_array = (fmask_array == 2) | (fmask_array == 4)
            drigo.array_to_raster(
                fmask_cloud_array.astype(np.uint8), image.fmask_cloud_raster,
                output_geo=common_geo, output_proj=common_proj,
                mask_array=None, output_nodata=255, stats_flag=stats_flag)
            del fmask_cloud_array
        if (calc_fmask_snow_flag and
                not os.path.isfile(image.fmask_snow_raster)):
            logging.debug('  Saving Fmask snow raster')
            fmask_snow_array = (fmask_array == 3)
            drigo.array_to_raster(
                fmask_snow_array.astype(np.uint8), image.fmask_snow_raster,
                output_geo=common_geo, output_proj=common_proj,
                mask_array=None, output_nodata=255, stats_flag=stats_flag)
            del fmask_snow_array
        if (calc_fmask_water_flag and
                not os.path.isfile(image.fmask_water_raster)):
            logging.debug('  Saving Fmask water raster')
            fmask_water_array = (fmask_array == 1)
            drigo.array_to_raster(
                fmask_water_array.astype(np.uint8), image.fmask_water_raster,
                output_geo=common_geo, output_proj=common_proj,
                mask_array=None, output_nodata=255, stats_flag=stats_flag)
            del fmask_water_array
        del fmask_array

    # # Calculate elevation
    # if calc_elev_flag and not os.path.isfile(elev_path):
    #     logging.info('Elevation')
    #     elev_array, elev_nodata = drigo.raster_to_array(
    #         elev_pr_path, 1, common_extent)
    #     drigo.array_to_raster(
    #         elev_array, elev_raster,
    #         output_geo=common_geo, output_proj=env.snap_proj,
    #         mask_array=common_array, stats_flag=stats_flag)
    #     del elev_array, elev_nodata, elev_path
    #
    # # Calculate landuse
    # if calc_landuse_flag and not os.path.isfile(landuse_raster):
    #     logging.info('Landuse')
    #     landuse_array, landuse_nodata = drigo.raster_to_array(
    #         landuse_pr_path, 1, common_extent)
    #     drigo.array_to_raster(
    #         landuse_array, landuse_raster,
    #         output_geo=common_geo, output_proj=env.snap_proj,
    #         mask_array=common_array, stats_flag=stats_flag)
    #     del landuse_array, landuse_nodata, landuse_raster

    # Calculate toa reflectance
    # f32_gtype, f32_nodata = numpy_to_gdal_type(np.float32)
    if calc_refl_toa_flag:
        logging.info('Top-of-Atmosphere Reflectance')
        if os.path.isfile(image.refl_toa_raster) and overwrite_flag:
            logging.debug('  Overwriting: {}'.format(
                image.refl_toa_raster))
            dripy.remove_file(image.refl_toa_raster)
        if not os.path.isfile(image.refl_toa_raster):
            # First build empty composite raster
            drigo.build_empty_raster(
                image.refl_toa_raster, image.band_toa_cnt, np.float32, None,
                env.snap_proj, env.cellsize, common_extent)
            # cos_theta_solar_flt = et_common.cos_theta_solar_func(
            #    image.sun_elevation)

            # Process by block
            logging.info('Processing by block')
            logging.debug('  Mask  cols/rows: {}/{}'.format(
                common_cols, common_rows))
            for b_i, b_j in drigo.block_gen(common_rows, common_cols, bs):
                logging.debug('  Block  y: {:5d}  x: {:5d}'.format(b_i, b_j))
                block_data_mask = drigo.array_to_block(
                    common_array, b_i, b_j, bs).astype(np.bool)
                block_rows, block_cols = block_data_mask.shape
                block_geo = drigo.array_offset_geo(common_geo, b_j, b_i)
                block_extent = drigo.geo_extent(
                    block_geo, block_rows, block_cols)
                logging.debug('    Block rows: {}  cols: {}'.format(
                    block_rows, block_cols))
                logging.debug('    Block extent: {}'.format(block_extent))
                logging.debug('    Block geo: {}'.format(block_geo))

                # Process each TOA band
                # for band, band_i in sorted(image.band_toa_dict.items()):
                for band, dn_image in sorted(dn_image_dict.items()):
                    if band not in image.band_toa_dict.keys():
                        continue
                    # thermal_band_flag = (band == image.thermal_band)
                    # Set 0 as nodata value
                    drigo.raster_path_set_nodata(dn_image, 0)
                    # Calculate TOA reflectance
                    dn_array, dn_nodata = drigo.raster_to_array(
                        dn_image, 1, block_extent)
                    dn_array = dn_array.astype(np.float64)
                    # dn_array = dn_array.astype(np.float32)
                    dn_array[dn_array == 0] = np.nan
                    #
                    if image.type in ['Landsat4', 'Landsat5', 'Landsat7']:
                        refl_toa_array = et_numpy.l457_refl_toa_band_func(
                            dn_array, image.cos_theta_solar,
                            image.dr, image.esun_dict[band],
                            image.lmin_dict[band], image.lmax_dict[band],
                            image.qcalmin_dict[band], image.qcalmax_dict[band])
                    elif image.type in ['Landsat8']:
                        refl_toa_array = et_numpy.l8_refl_toa_band_func(
                            dn_array, image.cos_theta_solar,
                            image.refl_mult_dict[band],
                            image.refl_add_dict[band])
                    # if (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and
                    #     not thermal_band_flag):
                    #     refl_toa_array = et_numpy.l457_refl_toa_band_func(
                    #         dn_array, image.cos_theta_solar,
                    #         image.dr, image.esun_dict[band],
                    #         image.lmin_dict[band], image.lmax_dict[band],
                    #         image.qcalmin_dict[band],
                    #         image.qcalmax_dict[band])
                    #         # image.rad_mult_dict[band],
                    #         # image.rad_add_dict[band])
                    # elif (image.type in ['Landsat8'] and
                    #       not thermal_band_flag):
                    #     refl_toa_array = et_numpy.l8_refl_toa_band_func(
                    #         dn_array, image.cos_theta_solar,
                    #         image.refl_mult_dict[band],
                    #         image.refl_add_dict[band])
                    # elif (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and
                    #       thermal_band_flag):
                    #     refl_toa_array = et_numpy.l457_ts_bt_band_func(
                    #         dn_array,
                    #         image.lmin_dict[band], image.lmax_dict[band],
                    #         image.qcalmin_dict[band],
                    #         image.qcalmax_dict[band],
                    #         # image.rad_mult_dict[band],
                    #         # image.rad_add_dict[band],
                    #         image.k1_dict[band], image.k2_dict[band])
                    # elif (image.type in ['Landsat8'] and
                    #       thermal_band_flag):
                    #     refl_toa_array = et_numpy.l8_ts_bt_band_func(
                    #         dn_array,
                    #         image.rad_mult_dict[band],
                    #         image.rad_add_dict[band],
                    #         image.k1_dict[band], image.k2_dict[band])

                    # refl_toa_array = et_numpy.refl_toa_band_func(
                    #     dn_array, cos_theta_solar_flt,
                    #     image.dr, image.esun_dict[band],
                    #     image.lmin_dict[band], image.lmax_dict[band],
                    #     image.qcalmin_dict[band], image.qcalmax_dict[band],
                    #     thermal_band_flag)
                    drigo.block_to_raster(
                        refl_toa_array.astype(np.float32),
                        image.refl_toa_raster,
                        b_i, b_j, band=image.band_toa_dict[band])
                    # drigo.array_to_comp_raster(
                    #    refl_toa_array.astype(np.float32),
                    #    image.refl_toa_raster,
                    #    image.band_toa_dict[band], common_array)
                    del refl_toa_array, dn_array
            if stats_flag:
                drigo.raster_statistics(image.refl_toa_raster)

        # # Process each TOA band
        # # for band, band_i in sorted(image.band_toa_dict.items()):
        # for band, dn_image in sorted(dn_image_dict.items()):
        #     thermal_band_flag = (band == image.thermal_band)
        #     #  Set 0 as nodata value
        #     drigo.raster_path_set_nodata(dn_image, 0)
        #     #  Calculate TOA reflectance
        #     dn_array, dn_nodata = drigo.raster_to_array(
        #         dn_image, 1, common_extent)
        #     dn_array = dn_array.astype(np.float64)
        #     # dn_array = dn_array.astype(np.float32)
        #     dn_array[dn_array == 0] = np.nan
        #     #
        #     if (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and
        #         not thermal_band_flag):
        #         refl_toa_array = et_numpy.l457_refl_toa_band_func(
        #             dn_array, image.cos_theta_solar,
        #             image.dr, image.esun_dict[band],
        #             image.lmin_dict[band], image.lmax_dict[band],
        #             image.qcalmin_dict[band], image.qcalmax_dict[band])
        #             # image.rad_mult_dict[band], image.rad_add_dict[band])
        #     elif (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and
        #           thermal_band_flag):
        #         refl_toa_array = et_numpy.l457_ts_bt_band_func(
        #             dn_array, image.lmin_dict[band], image.lmax_dict[band],
        #             image.qcalmin_dict[band], image.qcalmax_dict[band],
        #             # image.rad_mult_dict[band], image.rad_add_dict[band],
        #             image.k1_dict[band], image.k2_dict[band])
        #     elif (image.type in ['Landsat8'] and
        #           not thermal_band_flag):
        #         refl_toa_array = et_numpy.l8_refl_toa_band_func(
        #             dn_array, image.cos_theta_solar,
        #             image.refl_mult_dict[band], image.refl_add_dict[band])
        #     elif (image.type in ['Landsat8'] and
        #           thermal_band_flag):
        #         refl_toa_array = et_numpy.l8_ts_bt_band_func(
        #             dn_array,
        #             image.rad_mult_dict[band], image.rad_add_dict[band],
        #             image.k1_dict[band], image.k2_dict[band])
        #     # refl_toa_array = et_numpy.refl_toa_band_func(
        #     #     dn_array, cos_theta_solar_flt,
        #     #     image.dr, image.esun_dict[band],
        #     #     image.lmin_dict[band], image.lmax_dict[band],
        #     #     image.qcalmin_dict[band], image.qcalmax_dict[band],
        #     #     thermal_band_flag)
        #     drigo.array_to_comp_raster(
        #         refl_toa_array.astype(np.float32), image.refl_toa_raster,
        #         image.band_toa_dict[band], common_array)
        #     del refl_toa_array, dn_array


    # Calculate brightness temperature
    if calc_ts_bt_flag:
        logging.info('Brightness Temperature')
        if os.path.isfile(image.ts_bt_raster) and overwrite_flag:
            logging.debug('  Overwriting: {}'.format(image.ts_bt_raster))
            dripy.remove_file(image.ts_bt_raster)
        if not os.path.isfile(image.ts_bt_raster):
            band = image.thermal_band
            thermal_dn_path = dn_image_dict[band]
            drigo.raster_path_set_nodata(thermal_dn_path, 0)
            thermal_dn_array, thermal_dn_nodata = drigo.raster_to_array(
                thermal_dn_path, 1, common_extent, return_nodata=True)
            thermal_dn_mask = thermal_dn_array != thermal_dn_nodata
            if image.type in ['Landsat4', 'Landsat5', 'Landsat7']:
                ts_bt_array = et_numpy.l457_ts_bt_band_func(
                    thermal_dn_array,
                    image.lmin_dict[band], image.lmax_dict[band],
                    image.qcalmin_dict[band], image.qcalmax_dict[band],
                    # image.rad_mult_dict[band], image.rad_add_dict[band],
                    image.k1_dict[band], image.k2_dict[band])
            elif image.type in ['Landsat8']:
                ts_bt_array = et_numpy.l8_ts_bt_band_func(
                    thermal_dn_array,
                    image.rad_mult_dict[band], image.rad_add_dict[band],
                    image.k1_dict[band], image.k2_dict[band])
            # thermal_rad_array = et_numpy.refl_toa_band_func(
            #     thermal_dn_array, image.cos_theta_solar,
            #     image.dr, image.esun_dict[band],
            #     image.lmin_dict[band], image.lmax_dict[band],
            #     image.qcalmin_dict[band], image.qcalmax_dict[band],
            #     thermal_band_flag=True)
            # ts_bt_array = et_numpy.ts_bt_func(
            #     thermal_rad_array, image.k1_dict[image.thermal_band],
            #     image.k2_dict[image.thermal_band])
            ts_bt_array[~thermal_dn_mask] = np.nan
            drigo.array_to_raster(
                ts_bt_array, image.ts_bt_raster,
                output_geo=common_geo, output_proj=env.snap_proj,
                # mask_array=common_array,
                stats_flag=stats_flag)
            # del thermal_dn_array, thermal_rad_array
            del thermal_dn_path, thermal_dn_array, ts_bt_array


    # Interpolate/project/clip METRIC hourly/daily rasters
    if (calc_metric_ea_flag or
            calc_metric_wind_flag or
            calc_metric_etr_flag):
        logging.info('METRIC hourly/daily rasters')

        # Get bracketing hours from image acquisition time
        image_prev_dt = image.acq_datetime.replace(
            minute=0, second=0, microsecond=0)
        image_next_dt = image_prev_dt + timedelta(seconds=3600)

        # Get NLDAS properties from one of the images
        input_ws = os.path.join(
            metric_etr_input_ws, str(image_prev_dt.year))
        try:
            input_path = [
                os.path.join(input_ws, file_name)
                for file_name in os.listdir(input_ws)
                for match in [metric_hourly_re.match(file_name)]
                if (match and
                    (image_prev_dt.strftime('%Y%m%d') ==
                     match.group('YYYYMMDD')))][0]
        except IndexError:
            logging.error('  No hourly file for {}'.format(
                image_prev_dt.strftime('%Y-%m-%d %H00')))
            return False
        try:
            input_ds = gdal.Open(input_path)
            input_osr = drigo.raster_ds_osr(input_ds)
            # input_proj = drigo.osr_proj(input_osr)
            input_extent = drigo.raster_ds_extent(input_ds)
            input_cs = drigo.raster_ds_cellsize(input_ds, x_only=True)
            # input_geo = input_extent.geo(input_cs)
            input_x, input_y = input_extent.origin()
            input_ds = None
        except:
            logging.error('  Could not get default input image properties')
            logging.error('    {}'.format(input_path))
            return False

        # Project Landsat scene extent to NLDAS GCS
        common_gcs_osr = common_osr.CloneGeogCS()
        common_gcs_extent = drigo.project_extent(
            common_extent, common_osr, common_gcs_osr,
            cellsize=env.cellsize)
        common_gcs_extent.buffer_extent(0.1)
        common_gcs_extent.adjust_to_snap(
            'EXPAND', input_x, input_y, input_cs)
        # common_gcs_geo = common_gcs_extent.geo(input_cs)

        def metric_weather_func(output_raster, input_ws, input_re,
                                prev_dt, next_dt,
                                resample_method=gdal.GRA_NearestNeighbour,
                                rounding_flag=False):
            """Interpolate/project/clip METRIC hourly rasters"""
            logging.debug('    Output: {}'.format(output_raster))
            if os.path.isfile(output_raster):
                if overwrite_flag:
                    logging.debug('    Overwriting output')
                    dripy.remove_file(output_raster)
                else:
                    logging.debug('    Skipping, file already exists ' +
                                  'and overwrite is False')
                    return False
            prev_ws = os.path.join(input_ws, str(prev_dt.year))
            next_ws = os.path.join(input_ws, str(next_dt.year))

            # Technically previous and next could come from different days
            # or even years, although this won't happen in the U.S.
            try:
                prev_path = [
                    os.path.join(prev_ws, input_name)
                    for input_name in os.listdir(prev_ws)
                    for input_match in [input_re.match(input_name)]
                    if (input_match and
                        (prev_dt.strftime('%Y%m%d') ==
                         input_match.group('YYYYMMDD')))][0]
                logging.debug('    Input prev: {}'.format(prev_path))
            except IndexError:
                logging.error('  No previous hourly file')
                logging.error('    {}'.format(prev_dt))
                return False
            try:
                next_path = [
                    os.path.join(next_ws, input_name)
                    for input_name in os.listdir(next_ws)
                    for input_match in [input_re.match(input_name)]
                    if (input_match and
                        (next_dt.strftime('%Y%m%d') ==
                         input_match.group('YYYYMMDD')))][0]
                logging.debug('    Input next: {}'.format(next_path))
            except IndexError:
                logging.error('  No next hourly file')
                logging.error('    {}'.format(next_dt))
                return False

            # Band numbers are 1's based
            prev_band = int(prev_dt.strftime('%H')) + 1
            next_band = int(next_dt.strftime('%H')) + 1
            logging.debug('    Input prev band: {}'.format(prev_band))
            logging.debug('    Input next band: {}'.format(next_band))

            # Read arrays
            prev_array = drigo.raster_to_array(
                prev_path, band=prev_band, mask_extent=common_gcs_extent,
                return_nodata=False)
            next_array = drigo.raster_to_array(
                next_path, band=next_band, mask_extent=common_gcs_extent,
                return_nodata=False)
            if not np.any(prev_array) or not np.any(next_array):
                logging.warning('\nWARNING: Input NLDAS array is all nodata\n')
                return None

            output_array = hourly_interpolate_func(
                prev_array, next_array,
                prev_dt, next_dt, image.acq_datetime)
            output_array = drigo.project_array(
                output_array, resample_method,
                input_osr, input_cs, common_gcs_extent,
                common_osr, env.cellsize, common_extent, output_nodata=None)

            # Apply common area mask
            output_array[~common_array] = np.nan

            # Reduce the file size by rounding to the nearest n digits
            if rounding_flag:
                output_array = np.around(output_array, rounding_digits)
            # Force output to 32-bit float
            drigo.array_to_raster(
                output_array.astype(np.float32), output_raster,
                output_geo=common_geo, output_proj=common_proj,
                stats_flag=stats_flag)
            del output_array
            return True

        # Ea - Project to Landsat scene after clipping
        if calc_metric_ea_flag:
            logging.info('  Hourly vapor pressure (Ea)')
            metric_weather_func(
                image.metric_ea_raster, metric_ea_input_ws,
                metric_hourly_re, image_prev_dt, image_next_dt,
                gdal.GRA_Bilinear, rounding_flag=True)

        # Wind - Project to Landsat scene after clipping
        if calc_metric_wind_flag:
            logging.info('  Hourly windspeed')
            metric_weather_func(
                image.metric_wind_raster, metric_wind_input_ws,
                metric_hourly_re, image_prev_dt, image_next_dt,
                gdal.GRA_NearestNeighbour, rounding_flag=False)

        # ETr - Project to Landsat scene after clipping
        if calc_metric_etr_flag:
            logging.info('  Hourly reference ET (ETr)')
            metric_weather_func(
                image.metric_etr_raster, metric_etr_input_ws,
                metric_hourly_re, image_prev_dt, image_next_dt,
                gdal.GRA_NearestNeighbour, rounding_flag=False)

        # ETr 24hr - Project to Landsat scene after clipping
        if calc_metric_etr_flag:
            logging.info('  Daily reference ET (ETr)')
            logging.debug('    Output: {}'.format(
                image.metric_etr_24hr_raster))
            if (os.path.isfile(image.metric_etr_24hr_raster) and
                    overwrite_flag):
                logging.debug('    Overwriting output')
                os.remove(image.metric_etr_24hr_raster)
            if not os.path.isfile(image.metric_etr_24hr_raster):
                etr_prev_ws = os.path.join(
                    metric_etr_input_ws, str(image_prev_dt.year))
                try:
                    input_path = [
                        os.path.join(etr_prev_ws, file_name)
                        for file_name in os.listdir(etr_prev_ws)
                        for match in [metric_daily_re.match(file_name)]
                        if (match and
                            (image_prev_dt.strftime('%Y%m%d') ==
                             match.group('YYYYMMDD')))][0]
                    logging.debug('    Input: {}'.format(input_path))
                except IndexError:
                    logging.error('  No daily file for {}'.format(
                        image_prev_dt.strftime('%Y-%m-%d')))
                    return False
                output_array = drigo.raster_to_array(
                    input_path, mask_extent=common_gcs_extent,
                    return_nodata=False)
                output_array = drigo.project_array(
                    output_array, gdal.GRA_NearestNeighbour,
                    input_osr, input_cs, common_gcs_extent,
                    common_osr, env.cellsize, common_extent,
                    output_nodata=None)
                # Apply common area mask
                output_array[~common_array] = np.nan
                # Reduce the file size by rounding to the nearest n digits
                # output_array = np.around(output_array, rounding_digits)
                drigo.array_to_raster(
                    output_array, image.metric_etr_24hr_raster,
                    output_geo=common_geo, output_proj=common_proj,
                    stats_flag=stats_flag)
                del output_array
                del input_path

        # Tair - Project to Landsat scene after clipping
        if calc_metric_tair_flag:
            logging.info('  Hourly air temperature (Tair)')
            metric_weather_func(
                image.metric_tair_raster, metric_tair_input_ws,
                metric_hourly_re, image_prev_dt, image_next_dt,
                gdal.GRA_NearestNeighbour, rounding_flag=False)

        # Cleanup
        del image_prev_dt, image_next_dt

    # Soil Water Balance
    if calc_swb_ke_flag:
        logging.info('Daily soil water balance')

        # Check if output file already exists
        logging.debug('  Ke:  {}'.format(image.ke_raster))
        if os.path.isfile(image.ke_raster):
            if overwrite_flag:
                logging.debug('    Overwriting output')
                dripy.remove_file(image.ke_raster)
            else:
                logging.debug('    Skipping, file already '
                              'exists and overwrite is False')
                return False
        ke_array = et_common.raster_swb_func(
            image.acq_datetime, common_osr, env.cellsize, common_extent,
            awc_input_path, etr_input_ws, etr_input_re,
            ppt_input_ws, ppt_input_re,
            spinup_days=spinup_days, min_spinup_days=min_spinup_days)
        # Apply common area mask
        ke_array[~common_array] = np.nan
        # Reduce the file size by rounding to the nearest 2 digits
        np.around(ke_array, 2, out=ke_array)

        # Force output to 32-bit float
        drigo.array_to_raster(
            ke_array.astype(np.float32), image.ke_raster,
            output_geo=common_geo, output_proj=common_proj,
            stats_flag=stats_flag)

    # Remove Landsat TOA rasters
    if not keep_dn_flag:
        for landsat_item in dripy.build_file_list(
                image.orig_data_ws, image.image_name_re):
            os.remove(os.path.join(image.orig_data_ws, landsat_item))
    return True
Esempio n. 4
0
def main(cimis_ws=os.getcwd(),
         gridmet_ws=None,
         ancillary_ws=os.getcwd(),
         etr_flag=False,
         eto_flag=False,
         start_date=None,
         end_date=None,
         stats_flag=True,
         overwrite_flag=False):
    """Fill missing CIMIS days with projected data from GRIDMET

    Parameters
    ----------
    cimis_ws : str
        Root folder path of CIMIS data.
    gridmet_ws : str
        Root folder path of GRIDMET data.
    ancillary_ws : str
        Folder of ancillary rasters.
    etr_flag : bool, optional
        If True, compute alfalfa reference ET (ETr).
    eto_flag : bool, optional
        If True, compute grass reference ET (ETo).
    start_date : str, optional
        ISO format date (YYYY-MM-DD).
    end_date : str, optional
        ISO format date (YYYY-MM-DD).
    stats_flag : bool, optional
        If True, compute raster statistics (the default is True).
    overwrite_flag : bool, optional
        If True, overwrite existing files (the default is False).

    Returns
    -------
    None

    Notes
    -----
    Currently missing (CGM 2014-08-15)
    2010-11-16 -> 2010-11-23

    """
    logging.info('\nFilling CIMIS with GRIDMET')
    cimis_re = re.compile(
        '(?P<VAR>etr)_(?P<YYYY>\d{4})_daily_(?P<GRID>\w+).img$')
    # gridmet_re = re.compile(
    #     '(?P<VAR>ppt)_(?P<YYY>\d{4})_daily_(?P<GRID>\w+).img$')
    gridmet_fmt = 'etr_{}_daily_gridmet.img'

    # Compute ETr and/or ETo
    if not etr_flag and not eto_flag:
        logging.info('  ETo/ETr flag(s) not set, defaulting to ETr')
        etr_flag = True

    logging.debug('  CIMIS: {}'.format(cimis_ws))
    logging.debug('  GRIDMET: {}'.format(gridmet_ws))

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Get GRIDMET spatial reference and cellsize from elevation raster
    # gridmet_elev_raster = os.path.join(ancillary_ws, 'gridmet_elev.img')

    # Get CIMIS spatial reference and cellsize from mask raster
    cimis_mask_raster = os.path.join(ancillary_ws, 'cimis_mask.img')

    # Resample type
    # 0 = GRA_NearestNeighbour, Nearest neighbour (select on one input pixel)
    # 1 = GRA_Bilinear,Bilinear (2x2 kernel)
    # 2 = GRA_Cubic, Cubic Convolution Approximation (4x4 kernel)
    # 3 = GRA_CubicSpline, Cubic B-Spline Approximation (4x4 kernel)
    # 4 = GRA_Lanczos, Lanczos windowed sinc interpolation (6x6 kernel)
    # 5 = GRA_Average, Average (computes the average of all non-NODATA contributing pixels)
    # 6 = GRA_Mode, Mode (selects the value which appears most often of all the sampled points)
    resample_type = gdal.GRA_Bilinear

    # ETo/ETr workspaces
    cimis_eto_ws = os.path.join(cimis_ws, 'eto')
    cimis_etr_ws = os.path.join(cimis_ws, 'etr')
    gridmet_eto_ws = os.path.join(gridmet_ws, 'eto')
    gridmet_etr_ws = os.path.join(gridmet_ws, 'etr')

    # This allows GDAL to throw Python Exceptions
    # gdal.UseExceptions()
    # mem_driver = gdal.GetDriverByName('MEM')

    # Get CIMIS grid properties from mask
    logging.info('\nCIMIS Properties')
    cimis_mask_ds = gdal.Open(cimis_mask_raster)
    cimis_osr = drigo.raster_ds_osr(cimis_mask_ds)
    cimis_proj = drigo.osr_proj(cimis_osr)
    cimis_cs = drigo.raster_ds_cellsize(cimis_mask_ds, x_only=True)
    cimis_extent = drigo.raster_ds_extent(cimis_mask_ds)
    cimis_geo = cimis_extent.geo(cimis_cs)
    cimis_mask_ds = None
    logging.debug('  Projection: {}'.format(cimis_proj))
    logging.debug('  Cellsize: {}'.format(cimis_cs))
    logging.debug('  Geo: {}'.format(cimis_geo))
    logging.debug('  Extent: {}'.format(cimis_extent))

    # Read the CIMIS mask array if present
    cimis_mask, cimis_mask_nodata = drigo.raster_to_array(cimis_mask_raster)
    cimis_mask = cimis_mask != cimis_mask_nodata

    # # Get extent/geo from elevation raster
    # logging.info('\nGRIDMET Properties')
    # gridmet_ds = gdal.Open(gridmet_elev_raster)
    # gridmet_osr = drigo.raster_ds_osr(gridmet_ds)
    # gridmet_proj = drigo.osr_proj(gridmet_osr)
    # gridmet_cs = drigo.raster_ds_cellsize(gridmet_ds, x_only=True)
    # gridmet_full_extent = drigo.raster_ds_extent(gridmet_ds)
    # gridmet_full_geo = gridmet_full_extent.geo(gridmet_cs)
    # gridmet_x, gridmet_y = gridmet_full_extent.origin()
    # gridmet_ds = None
    # logging.debug('  Projection: {}'.format(gridmet_proj))
    # logging.debug('  Cellsize: {}'.format(gridmet_cs))
    # logging.debug('  Geo: {}'.format(gridmet_full_geo))
    # logging.debug('  Extent: {}'.format(gridmet_full_extent))

    # # Project CIMIS extent to the GRIDMET spatial reference
    # logging.info('\nGet CIMIS extent in GRIDMET spat. ref.')
    # gridmet_sub_extent = drigo.project_extent(
    #     cimis_extent, cimis_osr, gridmet_osr, cimis_cs)
    # gridmet_sub_extent.buffer_extent(4 * gridmet_cs)
    # gridmet_sub_extent.adjust_to_snap(
    #     'EXPAND', gridmet_x, gridmet_y, gridmet_cs)
    # gridmet_sub_geo = gridmet_sub_extent.geo(gridmet_cs)
    # logging.debug('  Geo: {}'.format(gridmet_sub_geo))
    # logging.debug('  Extent: {}'.format(gridmet_sub_extent))

    # Process Missing ETo
    if eto_flag:
        logging.info('\nETo')
        for cimis_name in sorted(os.listdir(cimis_eto_ws)):
            logging.debug("\n{}".format(cimis_name))
            cimis_match = cimis_re.match(cimis_name)
            if not cimis_match:
                logging.debug('  Regular expression didn\'t match, skipping')
                continue
            year = int(cimis_match.group('YYYY'))
            logging.info("  {}".format(str(year)))
            if start_dt is not None and year < start_dt.year:
                logging.debug('  Before start date, skipping')
                continue
            elif end_dt is not None and year > end_dt.year:
                logging.debug('  After end date, skipping')
                continue

            cimis_path = os.path.join(cimis_eto_ws, cimis_name)
            gridmet_path = os.path.join(gridmet_eto_ws,
                                        gridmet_fmt.format(str(year)))
            if not os.path.isfile(gridmet_path):
                logging.debug('  GRIDMET raster does not exist, skipping')
                continue
            if not os.path.isfile(cimis_path):
                logging.error('  CIMIS raster does not exist, skipping')
                continue

            # Check all valid dates in the year
            year_dates = _utils.date_range(dt.datetime(year, 1, 1),
                                           dt.datetime(year + 1, 1, 1))
            for date_dt in year_dates:
                if start_dt is not None and date_dt < start_dt:
                    continue
                elif end_dt is not None and date_dt > end_dt:
                    continue
                doy = int(date_dt.strftime('%j'))

                # Look for arrays that don't have data
                eto_array = drigo.raster_to_array(cimis_path,
                                                  band=doy,
                                                  return_nodata=False)
                if np.any(np.isfinite(eto_array)):
                    logging.debug('  {} - no missing data, skipping'.format(
                        date_dt.strftime('%Y-%m-%d')))
                    continue
                else:
                    logging.info('  {}'.format(date_dt.strftime('%Y-%m-%d')))

                # # This is much faster but doesn't apply the CIMIS mask
                # # Create an in memory dataset of the full ETo array
                # eto_full_rows, eto_full_cols = eto_full_array[:,:,doy_i].shape
                # eto_full_type, eto_full_nodata = numpy_to_gdal_type(np.float32)
                # eto_full_ds = mem_driver.Create(
                #     '', eto_full_cols, eto_full_rows, 1, eto_full_type)
                # eto_full_ds.SetProjection(gridmet_proj)
                # eto_full_ds.SetGeoTransform(gridmet_full_geo)
                # eto_full_band = eto_full_ds.GetRasterBand(1)
                # # eto_full_band.Fill(eto_full_nodata)
                # eto_full_band.SetNoDataValue(eto_full_nodata)
                # eto_full_band.WriteArray(eto_full_array[:,:,doy_i], 0, 0)
                #
                # # Extract the subset
                # eto_sub_array, eto_sub_nodata = drigo.raster_ds_to_array(
                #     eto_full_ds, 1, gridmet_sub_extent)
                # eto_sub_rows, eto_sub_cols = eto_sub_array.shape
                # eto_full_ds = None
                #
                # # Create projected raster
                # eto_sub_ds = mem_driver.Create(
                #     '', eto_sub_cols, eto_sub_rows, 1, eto_full_type)
                # eto_sub_ds.SetProjection(gridmet_proj)
                # eto_sub_ds.SetGeoTransform(gridmet_sub_geo)
                # eto_sub_band = eto_sub_ds.GetRasterBand(1)
                # eto_sub_band.Fill(eto_sub_nodata)
                # eto_sub_band.SetNoDataValue(eto_sub_nodata)
                # eto_sub_band.WriteArray(eto_sub_array, 0, 0)
                # eto_sub_ds.FlushCache()
                #
                # # Project input DEM to CIMIS spat. ref.
                # drigo.project_raster_ds(
                #     eto_sub_ds, gridmet_path, resample_type,
                #     env.snap_proj, env.cellsize, cimis_extent)
                # eto_sub_ds = None

                # Extract the subset
                gridmet_ds = gdal.Open(gridmet_path)
                gridmet_extent = drigo.raster_ds_extent(gridmet_ds)
                gridmet_cs = drigo.raster_ds_cellsize(gridmet_ds, x_only=True)
                gridmet_osr = drigo.raster_ds_osr(gridmet_ds)
                eto_full_array = drigo.raster_ds_to_array(gridmet_ds,
                                                          band=doy,
                                                          return_nodata=False)
                gridmet_ds = None

                # Get the projected subset of the full ETo array
                # This is slower than projecting the subset above
                eto_sub_array = drigo.project_array(eto_full_array,
                                                    resample_type, gridmet_osr,
                                                    gridmet_cs, gridmet_extent,
                                                    cimis_osr, cimis_cs,
                                                    cimis_extent)

                # Save the projected array
                drigo.array_to_comp_raster(eto_sub_array,
                                           cimis_path,
                                           band=doy,
                                           stats_flag=False)
                # drigo.array_to_raster(
                #     eto_sub_array, output_path, output_geo=cimis_geo,
                #     output_proj=cimis_proj, stats_flag=False)
                # drigo.array_to_raster(
                #     eto_sub_array, output_path,
                #     output_geo=cimis_geo, output_proj=cimis_proj,
                #     mask_array=cimis_mask, stats_flag=False)

                del eto_sub_array, eto_full_array

            if stats_flag:
                drigo.raster_statistics(cimis_path)

    # Process Missing ETr
    if etr_flag:
        logging.info('\nETr')
        for cimis_name in sorted(os.listdir(cimis_etr_ws)):
            cimis_match = cimis_re.match(cimis_name)
            if not cimis_match:
                continue
            year = int(cimis_match.group('YYYY'))
            if start_dt is not None and year < start_dt.year:
                continue
            elif end_dt is not None and year > end_dt.year:
                continue
            logging.info("{}".format(str(year)))

            cimis_path = os.path.join(cimis_etr_ws, cimis_name)
            gridmet_path = os.path.join(gridmet_etr_ws,
                                        gridmet_fmt.format(str(year)))
            if not os.path.isfile(gridmet_path):
                continue
            if not os.path.isfile(cimis_path):
                logging.error('  CIMIS raster does not exist')
                continue

            # Check all valid dates in the year
            year_dates = _utils.date_range(dt.datetime(year, 1, 1),
                                           dt.datetime(year + 1, 1, 1))
            for date_dt in year_dates:
                if start_dt is not None and date_dt < start_dt:
                    continue
                elif end_dt is not None and date_dt > end_dt:
                    continue
                doy = int(date_dt.strftime('%j'))

                # Look for arrays that don't have data
                etr_array = drigo.raster_to_array(cimis_path,
                                                  band=doy,
                                                  return_nodata=False)
                if np.any(np.isfinite(etr_array)):
                    logging.debug('  {} - skipping'.format(
                        date_dt.strftime('%Y-%m-%d')))
                    continue
                else:
                    logging.info('  {}'.format(date_dt.strftime('%Y-%m-%d')))

                # Extract the subset
                gridmet_ds = gdal.Open(gridmet_path)
                gridmet_extent = drigo.raster_ds_extent(gridmet_ds)
                gridmet_cs = drigo.raster_ds_cellsize(gridmet_ds, x_only=True)
                gridmet_osr = drigo.raster_ds_osr(gridmet_ds)
                etr_full_array = drigo.raster_ds_to_array(gridmet_ds,
                                                          band=doy,
                                                          return_nodata=False)
                gridmet_ds = None

                # Get the projected subset of the full ETr array
                # This is slower than projecting the subset
                etr_sub_array = drigo.project_array(etr_full_array,
                                                    resample_type, gridmet_osr,
                                                    gridmet_cs, gridmet_extent,
                                                    cimis_osr, cimis_cs,
                                                    cimis_extent)

                # # Save the projected array
                drigo.array_to_comp_raster(etr_sub_array,
                                           cimis_path,
                                           band=doy,
                                           stats_flag=False)
                # drigo.array_to_raster(
                #     etr_sub_array, output_path,
                #     output_geo=cimis_geo, output_proj=cimis_proj,
                #     mask_array=cimis_mask, stats_flag=False)

                del etr_sub_array, etr_full_array

            if stats_flag:
                drigo.raster_statistics(cimis_path)

    logging.debug('\nScript Complete')