self.words = words self.starts = starts self.ends = ends self.labels = labels self.predict_labels = [] if __name__ == '__main__': # parameters config_file = 'default.ini' config = Configurable(config_file) # model model = CompanyPredict() # load data train_data = read_pkl(config.train_pkl) dev_data = None if config.para_dev_file: dev_data = read_pkl(config.dev_pkl) test_data = read_pkl(config.test_pkl) word_list = read_pkl(config.load_feature_voc) p_label_list, s_label_list = read_pkl(config.load_label_voc) word_voc = VocabSrc(word_list) p_label_voc = VocabTgt(p_label_list) s_label_voc = VocabTgt(s_label_list) embedding = None if os.path.isfile(config.embedding_pkl): embedding = read_pkl(config.embedding_pkl)
parse = argparse.ArgumentParser('Attention Target Classifier') parse.add_argument('--config_file', type=str, default='default.ini') parse.add_argument('--thread', type=int, default=1) parse.add_argument('--use_cuda', action='store_true', default=False) parse.add_argument('--model', type=str, default='model.742') args, extra_args = parse.parse_known_args() config = Configurable(args.config_file, extra_args) torch.set_num_threads(args.thread) config.use_cuda = False if gpu and args.use_cuda: config.use_cuda = True print("\nGPU using status: ", config.use_cuda) # load vocab and model feature_list = read_pkl(config.load_feature_voc) label_list = read_pkl(config.load_label_voc) feature_vec = VocabSrc(feature_list) label_vec = VocabTgt(label_list) # model if config.which_model == 'Vanilla': model = Vanilla(config, feature_vec.size, config.embed_dim, PAD, label_vec.size) elif config.which_model == 'Contextualized': model = Contextualized(config, feature_vec.size, config.embed_dim, PAD, label_vec.size) elif config.which_model == 'ContextualizedGates': model = ContextualizedGates(config, feature_vec.size, config.embed_dim, PAD, label_vec.size) else: