Esempio n. 1
0
    def raster_soft(self, edt2, conn):
        rasters = exp(edt2, self.sigma2)

        connect = conn.view(edt2.shape[0], -1, 1, 1)

        if self.hard:
            connect = connect + ((connect > 0.5).float() - connect).detach()

        rasters = rasters * connect
        return softor(rasters, keepdim=True)
Esempio n. 2
0
def render_crs(params, sigma2, grid, coordpairs):
    ncrs = params.shape[0]
    crs = torch.cat((params[:, coordpairs[:, 0]], params[:, coordpairs[:, 1]],
                     params[:, coordpairs[:, 2]], params[:, coordpairs[:, 3]]),
                    dim=-1)  # [batch, nlines, 8]

    crs = crs.view(ncrs, -1, 4, 2)

    return softor(exp(
        curve_edt2_polyline(crs, grid, 10,
                            cfcn=centripetal_catmull_rom_spline), sigma2),
                  dim=1).unsqueeze(0)
Esempio n. 3
0
def render(params, cparams, sigma2, grid, coordpairs, args):
    ras = []

    if args.points > 0:
        pparams = params[0:2 * args.points].view(args.points, 2)
        if not isinstance(sigma2, torch.Tensor):
            pts = render_points(pparams, sigma2, grid)
        else:
            pts = render_points(pparams, sigma2[0:args.points], grid)
        ras.append(pts)

    if args.lines > 0:
        lparams = params[2 * args.points:2 * args.points +
                         4 * args.lines].view(args.lines, 2, 2)
        if not isinstance(sigma2, torch.Tensor):
            lns = render_lines(lparams, sigma2, grid)
        else:
            lns = render_lines(lparams,
                               sigma2[args.points:args.points + args.lines],
                               grid)
        ras.append(lns)

    if args.crs > 0:
        crsparams = params[2 * args.points + 4 * args.lines:].view(
            args.crs, 2 + args.crs_points, 2)
        if not isinstance(sigma2, torch.Tensor):
            crs = render_crs(crsparams, sigma2, grid, coordpairs)
        else:
            crs = render_crs(crsparams, sigma2[args.points + args.lines:],
                             grid, coordpairs)
        ras.append(crs)

    ras = torch.cat(ras, dim=0)  # [1, nprim, row, col]

    if cparams is not None:
        ras = ras.unsqueeze(2)  # [1, nprim, 1, row, col]
        ras = ras.repeat_interleave(3, dim=2)  # [1, nprim, 3, row, col]
        lab = cparams.unsqueeze(-1).unsqueeze(-1)  # npts, 4, 1, 1
        ras = lab * ras
        return over(ras, dim=1, keepdim=False)
        # return over_recursive(ras, dim=1)

    return softor(ras, dim=1, keepdim=True)
    def forward(self, inp, state=None):
        bs = inp.shape[0]
        composite = torch.zeros(bs, 1, self.sz, self.sz, device=inp.device)
        lines = []

        edt2 = None
        for i in range(self.steps):
            prev_latent = self.encoder(composite)
            latent = torch.cat((inp, prev_latent), dim=-1)

            params, conn = self.decode_to_params(latent)

            lines.append(params)  # is this correct here?

            edt2 = self.create_edt2(params)
            ras = self.raster_soft(edt2, conn)

            composite = softor(torch.cat((composite, ras), dim=1)).unsqueeze(1)

        if state is not None:
            state[metrics.HARDRASTER] = self.raster_hard(edt2)
            state[metrics.SQ_DISTANCE_TRANSFORM] = edt2

        return composite
 def raster_soft(self, edt2, conn):
     rasters = exp(edt2, self.sigma2)
     rasters = rasters * conn.view(edt2.shape[0], -1, 1, 1)
     return softor(rasters, keepdim=True)
Esempio n. 6
0
 def raster_hard(self, edt2):
     rasters = nearest_neighbour(edt2.detach(), compute_nearest_neighbour_sigma_bres(self.grid))
     return softor(rasters, keepdim=True)
Esempio n. 7
0
 def raster_soft(self, edt2, sigma2):
     rasters = exp(edt2, sigma2)
     return softor(rasters, keepdim=True)