from imutils import paths from dsloader import DsLoader from dspreprocessor import DsPreprocessor from imagetoarray import ImageToArray # get the list of images from the dataset path image_paths = list(paths.list_images('datasets/animals')) print("INFO: loading and preprocessing") #loading and preprocessing images using the classes created # create instances for the loader and preprocessor classes dp = DsPreprocessor(32, 32) itoa = ImageToArray() dl = DsLoader(preprocessors=[dp, itoa]) (data, labels) = dl.load(image_paths) #normalizing the array of data data = data.astype("float")/255.0 print("INFO: splitting the dataset") # split 25 percentage for testing and rest for training (trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, random_state=40) #binarization using one hot encoding label_binarizer = LabelBinarizer() trainY = label_binarizer.fit_transform(trainY) testY = label_binarizer.fit_transform(testY) #train the model using ShallowNet and Stochastic Gradient Descent optimizer #================================================ print("training the model")