Esempio n. 1
0
    def get_phase_and_diff(i):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(gesture_frames, fc - 150,
                                             fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise, 10可能太大了,但目前训练使用的都是10
        decompositionQ = seasonal_decompose(Q.T,
                                            period=period,
                                            two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T,
                                            period=period,
                                            two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, period:]
        trendI = trendI[:, period:]

        unwrapped_phase = get_phase(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(unwrapped_phase[0])
        # plt.show()
        assert unwrapped_phase.shape[1] > 1
        # 用diff,和两次diff
        unwrapped_phase_list[i] = np.diff(unwrapped_phase)[:, :-1]
Esempio n. 2
0
def extract_phasedata_from_audio_special_for_onemic(audio_file,
                                                    phasedata_save_file,
                                                    audio_type='wav',
                                                    mic_array=True):
    origin_data, fs = load_audio_data(audio_file, audio_type)
    fs = fs  # 采样率
    data = origin_data.reshape((-1, 8))
    data = data.T  # shape = (num_of_channels, all_frames)
    data = data[:, int(fs * DELAY_TIME):]
    mic_num = 0
    # 只用一个mic
    data = data[mic_num, :]
    data = data.reshape((1, -1))
    # 开始处理数据
    t = 0
    magnti_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, 10:]
        trendI = trendI[:, 10:]

        magnti = get_phase(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(magnti[0])
        # plt.show()
        assert magnti.shape[1] > 1
        # 用diff,和两次diff
        magnti_list.append(np.diff(magnti)[:, :-1])
        # plt.plot(np.diff(magnti).reshape(-1))
        # plt.show()
        magnti_list.append(np.diff(np.diff(magnti)))
    merged_u_p = np.array(magnti_list).reshape((NUM_OF_FREQ * 1 * 2, -1))
    print(merged_u_p.shape)
    # 压缩便于保存
    flattened_m_u_p = merged_u_p.flatten()
    # 由于长短不一,不能放在一起
    # np.savetxt(dataset_save_file, flattened_m_u_p.reshape(1, -1))
    np.savez_compressed(phasedata_save_file, phasedata=flattened_m_u_p)
    return 1
Esempio n. 3
0
def beamform_on_raw_audio_data(filename):
    data, fs = load_audio_data(filename, 'wav')
    data = data.T
    data = data[:7, int(fs * DELAY_TIME):]

    a_angel = 240
    e_angel = 0
    two_d_angel = [[np.deg2rad(a_angel), np.deg2rad(e_angel)]]
    c = 343
    spacing = 0.043
    mic_array_pos = cons_uca(spacing)
    sd = steering_plane_wave(mic_array_pos, c, two_d_angel)
    beamformed_data = beamform_real(data, sd).reshape(1, -1)
    beamformed_data_2 = ump_8_beamform(data, 48000, two_d_angel).reshape(1, -1)
    phase_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T
        # trendQ = Q
        # trendI = I
        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        # trendQ = trendQ[:, 10:]
        # trendI = trendI[:, 10:]
        trendQ = Q
        trendI = I
        # draw_circle(trendI[0], trendQ[0])
        raw_phase = get_phase(trendI, trendQ)
        '''
        对相位beamform
        '''
        noise = np.mean(raw_phase[:, 20:60], axis=1).reshape(-1, 1)
        print(noise.shape)
        raw_phase_denoised = raw_phase - noise

        bphase_denoised = beamform_real(raw_phase_denoised, sd).reshape(1, -1)

        def normalize_max_min(x):
            max = np.max(x)
            min = np.min(x)
            return (x - min) / (max - min)

        '''
        对beamformed signal求相位
        '''
        beamformed_data_filter = butter_bandpass_filter(
            beamformed_data, fc - 150, fc + 150)
        bI_raw, bQ_raw = get_cos_IQ_raw(beamformed_data_filter, fc, fs)
        bI = move_average_overlap_filter(bI_raw)
        bQ = move_average_overlap_filter(bQ_raw)
        bphase = get_phase(bI, bQ)

        beamformed_data_filter = butter_bandpass_filter(
            beamformed_data_2, fc - 150, fc + 150)
        bI_raw, bQ_raw = get_cos_IQ_raw(beamformed_data_filter, fc, fs)
        bI = move_average_overlap_filter(bI_raw)
        bQ = move_average_overlap_filter(bQ_raw)
        bphase_2 = get_phase(bI, bQ)

        plt.figure()
        plt.subplot(2, 1, 1)
        plt.plot(raw_phase[0])
        plt.subplot(2, 1, 2)
        plt.plot(bphase_denoised[0])
        plt.show()
Esempio n. 4
0
def beamform_after_IQ(filename, start, dur):
    data, fs = load_audio_data(filename, 'wav')
    data = data.T
    data = data[:7, int(fs * DELAY_TIME):]
    # data = data[:7, start:start+dur]
    phase_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # I = butter_lowpass_filter(I_raw, 150)
        # Q = butter_lowpass_filter(Q_raw, 150)

        # I = I[:, 5:-5]
        # Q = Q[:, 5:-5]

        # plt.plot(I[0][5:-5])
        # plt.plot(Q[0][5:-5])
        # plt.show()
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T
        # trendQ = Q
        # trendI = I
        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        # trendQ = trendQ[:, 10:]
        # trendI = trendI[:, 10:]
        trendQ = Q
        trendI = I
        # draw_circle(trendI[0], trendQ[0])
        raw_phase = get_phase(trendI, trendQ)

        exp_phase = trendI + 1j * trendQ
        '''
        去除噪声,减去平均值(尝试)
        '''
        mean_noise = np.mean(raw_phase[:1000], axis=1)

        # beamform
        a_angel = 120
        e_angel = 0
        two_d_angel = [[np.deg2rad(a_angel), np.deg2rad(e_angel)]]
        c = 343
        spacing = 0.043
        mic_array_pos = cons_uca(spacing)

        # sp = music(data, mic_array_pos, fc, c, np.arange(0, 360), np.arange(0, 30), 1)
        # # plt.plot(sp.reshape(-1))
        # plt.pcolormesh(sp)
        # plt.show()

        azumi = (0, 360)
        eleva = (0, 90)

        # beamscan_spectrum = np.zeros((azumi[1] - azumi[0], eleva[1] - eleva[0]))
        # # 估计
        # for angel_1 in range(azumi[0], azumi[1]):
        #     for angel_2 in range(eleva[0], eleva[1]):
        #         two_angel = [[np.deg2rad(angel_1), np.deg2rad(angel_2)]]
        #         sd = steering_plane_wave(mic_array_pos, c, two_angel)
        #         adjust = np.exp(-1j * 2 * np.pi * fc * sd)
        #         syn_signals = exp_phase * adjust.T
        #         # syn_signals = np.real(syn_signals)
        #         beamformed_signal = np.sum(syn_signals, axis=0)
        #         beamscan_spectrum[angel_1][angel_2] = np.sum(abs(beamformed_signal))
        # # return beamscan_spectrum
        # # plt.pcolormesh(beamscan_spectrum)
        # # plt.show()
        # plt.plot(beamscan_spectrum[:, 0])
        # plt.grid()
        # plt.show()

        sd = steering_plane_wave(mic_array_pos, c, two_d_angel)
        adjust = np.exp(-1j * 2 * np.pi * fc * sd).T
        assert exp_phase.shape[0] == adjust.shape[0]
        syn_signals = exp_phase * adjust
        beamformed_signal = np.sum(syn_signals, axis=0).reshape(1, -1)
        phase = get_phase(np.real(beamformed_signal),
                          np.imag(beamformed_signal))

        plt.show()

        plt.figure()
        plt.subplot(2, 1, 1)
        plt.plot(raw_phase[0])
        plt.subplot(2, 1, 2)
        plt.plot(phase[0])
        plt.show()

        phase_list.append(phase)
Esempio n. 5
0
def extract_magndata_from_beamformed_audio(audio_file,
                                           phasedata_save_file,
                                           audio_type='pcm',
                                           mic_array=False):
    origin_data, fs = load_audio_data(audio_file, audio_type)
    fs = fs  # 采样率
    # 已经reshape过了为什么还要reshape
    if mic_array:
        data = origin_data.reshape((-1, N_CHANNELS + 1))
    else:
        data = origin_data.reshape((-1, N_CHANNELS))
    data = data.T  # shape = (num_of_channels, all_frames)
    data = data[:, int(fs * DELAY_TIME):]
    if mic_array:
        # 第八个声道不要
        data = data[:7, :]
    # beamform,角度?
    data = ump_8_beamform(data, fs, angel=[[np.pi * 4 / 3, 0]])
    assert data.shape[0] == 1
    # 开始处理数据
    t = 0
    magnti_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, 10:]
        trendI = trendI[:, 10:]

        magnti = get_magnitude(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(np.diff(magnti[0].reshape(-1)))
        # plt.show()
        assert magnti.shape[1] > 1
        # 用diff,和两次diff
        magnti_list.append(np.diff(magnti)[:, :-1])
        # plt.plot(np.diff(magnti).reshape(-1))
        # plt.show()
        magnti_list.append(np.diff(np.diff(magnti)))
    merged_u_p = np.array(magnti_list).reshape((NUM_OF_FREQ * 1 * 2, -1))
    print(merged_u_p.shape)
    # 压缩便于保存
    flattened_m_u_p = merged_u_p.flatten()
    # 由于长短不一,不能放在一起
    # np.savetxt(dataset_save_file, flattened_m_u_p.reshape(1, -1))
    np.savez_compressed(phasedata_save_file, phasedata=flattened_m_u_p)
    return 1
Esempio n. 6
0
def extract_phasedata_from_audio(audio_file,
                                 phasedata_save_file,
                                 audio_type='pcm',
                                 mic_array=False):
    '''
    目前使用的是对相位取一次差分
    :param audio_file:
    :param phasedata_save_file:
    :param audio_type:
    :param mic_array:
    :return:
    '''
    origin_data, fs = load_audio_data(audio_file, audio_type)
    fs = fs  # 采样率
    # data = origin_data[int(fs * DELAY_TIME):]
    # data = data.reshape((-1, N_CHANNELS))
    # data = data.T  # shape = (num_of_channels, all_frames)
    if mic_array:
        data = origin_data.reshape((-1, N_CHANNELS + 1))
    else:
        data = origin_data.reshape((-1, N_CHANNELS))
    data = data.T  # shape = (num_of_channels, all_frames)
    data = data[:, int(fs * DELAY_TIME):]
    if mic_array:
        # 第八个声道不要
        data = data[:7, :]
    # 开始处理数据
    t = 0
    unwrapped_phase_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, 10:]
        trendI = trendI[:, 10:]

        unwrapped_phase = get_phase(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(unwrapped_phase[0])
        # plt.show()
        assert unwrapped_phase.shape[1] > 1
        # 用diff,和两次diff
        unwrapped_phase_list.append(np.diff(unwrapped_phase)[:, :-1])
        # plt.plot(np.diff(unwrapped_phase).reshape(-1))
        # plt.show()

        # unwrapped_phase_list.append(np.diff(np.diff(unwrapped_phase)))
    merged_u_p = np.array(unwrapped_phase_list).reshape(
        (NUM_OF_FREQ * N_CHANNELS * 1, -1))
    print(merged_u_p.shape)
    # 压缩便于保存
    flattened_m_u_p = merged_u_p.flatten()
    # 由于长短不一,不能放在一起
    # np.savetxt(dataset_save_file, flattened_m_u_p.reshape(1, -1))
    np.savez_compressed(phasedata_save_file, phasedata=flattened_m_u_p)
    return N_CHANNELS