Esempio n. 1
0
    def test_001_t(self):
        """
        test one packet spreading and compare it with python implementation
        """

        sf = 2**10
        l = 32 * 2 * 8
        seed = 12345
        reset_per_symbol = False

        #init data
        data_in = np.random.randint(0, 2, size=l)

        #init tag
        key = pmt.intern("len_tag")
        val = pmt.from_long(l)
        tag = gr.tag_utils.python_to_tag([0, key, val])

        # set up fg
        self.src = blocks.vector_source_b(data_in, False, 1, [tag])
        self.spread = lpwan.dsss_spreading_bb("len_tag", sf, seed,
                                              reset_per_symbol, 0, 0)
        self.snk = blocks.vector_sink_b(1)
        self.tb.connect(self.src, self.spread, self.snk)

        m = dsss_modulator()
        goldcode = m.generate_goldcode(seed, l * sf)
        out_ref = m.spread_goldcode(data_in, int(np.log2(sf)), goldcode,
                                    reset_per_symbol)

        self.tb.run()

        # check data
        self.assertFloatTuplesAlmostEqual(out_ref, self.snk.data())
    def test_002_t(self):
        #OQPSK, no frequency offset

        mod = dsss_modulator()
        mod.shr_goldcode_reset_per_symbol = True
        mod.shr_goldcode_seed = np.random.randint(500, 500000)
        mod.shr_spreading_factor = 8
        mod.sfd_present = False
        mod.preamble_size = 32
        mod.init()
        sps = 2
        sf = 2**mod.shr_spreading_factor

        #init preamble block
        self.preamble_search = dsss_preamble_search_cc(
            sf, mod.shr_goldcode_seed, 0, 0, [0], mod.preamble_size, False,
            sps, 0, 1000000, 'oqpsk', [0])

        #generate data with preamble only
        preamble = mod.oqpsk(mod.encode_header())
        n = 6
        data_in = []
        positions = []
        for i in range(n):
            data_in = np.append(data_in,
                                np.zeros(np.random.randint(10000, 20000)))
            data_in = np.append(data_in, preamble)
            positions = np.append(positions,
                                  len(data_in) +
                                  self.preamble_search.rx_delay -
                                  1)  #delay in data signal in filterbank
        data_in = np.append(data_in, np.zeros(np.random.randint(10000, 20000)))
        data_in = data_in + np.random.randn(len(data_in)) * 5

        # set up fg
        self.src = blocks.vector_source_c_make(data_in, False, 1, [])
        self.snk_corr = blocks.vector_sink_c_make(1)
        self.snk_data = blocks.vector_sink_c_make(1)
        self.tb.connect(self.src, self.preamble_search)
        self.tb.connect((self.preamble_search, 0), self.snk_data)
        self.tb.connect((self.preamble_search, 1), self.snk_corr)
        self.tb.run()

        # check data
        tags = self.snk_data.tags()
        searched_positions = np.array([])
        for i in range(len(tags)):
            searched_positions = np.append(searched_positions,
                                           tags[i].offset + sf)

        found = np.in1d(positions, searched_positions.astype(int))
        self.assertTrue(np.all(found))
    def test_006_t(self):
        #OQPSK, frequency offset, multiple frequency paths

        mod = dsss_modulator()
        mod.shr_goldcode_reset_per_symbol = True
        mod.shr_goldcode_seed = np.random.randint(500, 500000)
        mod.shr_spreading_factor = 8
        mod.sfd_present = False
        mod.preamble_size = 32
        mod.init()
        sps = 2
        sf = 2**mod.shr_spreading_factor
        chiprate = 2000000
        fo = 8000  # Hz

        #init preamble block
        self.preamble_search = dsss_preamble_search_cc(
            sf, mod.shr_goldcode_seed, 0, 0, [0, 7900, -7900],
            mod.preamble_size, False, sps, 0, chiprate, 'oqpsk', [0])

        #generate data with preamble only
        preamble = mod.oqpsk(mod.encode_header())
        n = 20
        data_in = []
        positions = []
        for i in range(n):
            data_in = np.append(data_in,
                                np.zeros(np.random.randint(10000, 20000)))
            data_in = np.append(data_in, preamble)
            positions = np.append(positions,
                                  len(data_in) +
                                  self.preamble_search.rx_delay -
                                  1)  #delay in data signal in filterbank
        data_in = np.append(data_in, np.zeros(np.random.randint(10000, 20000)))
        #frequency offset
        data_in = data_in * np.exp(
            1j * 2.0 * np.pi * fo / chiprate * np.arange(0, len(data_in)))
        #add some noise
        data_in = data_in + np.random.randn(len(data_in)) * 1

        # set up fg
        self.src = blocks.vector_source_c_make(data_in, False, 1, [])
        self.snk_corr = blocks.vector_sink_c_make(1)
        self.snk_data = blocks.vector_sink_c_make(1)
        self.tb.connect(self.src, self.preamble_search)
        self.tb.connect((self.preamble_search, 0), self.snk_data)
        self.tb.connect((self.preamble_search, 1), self.snk_corr)
        self.tb.run()

        # check data
        #time offset estimation
        tags = self.snk_data.tags()
        searched_positions = np.array([])
        for i in range(len(tags)):
            searched_positions = np.append(searched_positions,
                                           tags[i].offset + sf)
        found = np.in1d(positions, searched_positions.astype(int))
        self.assertTrue(np.all(found))

        #freq offset estimation
        mask = np.in1d(searched_positions.astype(int), positions)
        v = np.asarray(tags)[mask]

        for t in v:
            self.assertTrue(pmt.to_python(t.value)['fo_est'] < fo * 1.2)
            self.assertTrue(pmt.to_python(t.value)['fo_est'] > fo * 0.8)
Esempio n. 4
0
# Boston, MA 02110-1301, USA.
#

import numpy as np
import dsss_const
import dsss_mod
import dsss_demod
import matplotlib.pyplot as plt
import scipy.signal as sig
import numpy.random as rnd


if __name__ == "__main__":

    nframes = 2
    m = dsss_mod.dsss_modulator()
    d = dsss_demod.dsss_demodulator()
    mod_data = m.modulate_random(nframes)

    # add some noise
    bb=mod_data[1]
    l=len(bb)
    print "Sigpower BB:", sum(abs(mod_data[0]**2))/len(mod_data[0])
    noise_power = 1
    bb = bb + rnd.normal(size=l, scale=np.sqrt(noise_power)) + 1j * rnd.normal(size=l, scale=np.sqrt(noise_power))

    demod_data = d.demod(bb, nframes, m.psdu_gold_code, m.psdu_ovsf_code)

    print "Produced", nframes, "Frames"
    print "Spreading Factor for Payload is", m.psdu_spreading_factor
    print "Spreading Factor for PHY header is", m.shr_spreading_factor