Esempio n. 1
0
def finalize(config, experiment):
    experiment.records = top_k(experiment.records, 'mean_acc', 30)
    experiment['exp_name'] = config['exp_name']
Esempio n. 2
0
from sklearn.datasets import load_iris
from sklearn.metrics import precision_score
from sklearn.cross_validation import train_test_split

classes = ["sklearn.ensemble.RandomForestClassifier"]
models = grid_generator.grid_from_classes(classes)

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.30)

# create a new experiment
ex = Experiment(main["logger"])

for m in models:
    # create a new record
    rec = ex.record()

    m.fit(X_train, y_train)
    preds = m.predict(X_test)
    rec["precision"] = precision_score(y_test, preds)
    rec["parameters"] = m.get_params()
    rec["model"] = model_name(m)


# select top_k
ex.records = top_k(ex.records, "precision", 2)

# store records in the database
ex.save()