Esempio n. 1
0
def main(args):
    files = Path(args.filespath).rglob('*.gz')

    for f in files:
        sample = du.load(str(f))
        o = sample['o']
        m = getattr(lie, o.lie)
        K = len(sample['pi']) - 1
        T = sample['theta'].shape[0]

        if K == 0:
            omega = np.zeros((
                T,
                0,
            ) + o.dxGm)
            sample['omega'] = omega
            du.save(str(f), sample)
            continue

        theta = sample['theta']
        omega = np.stack([m.karcher(theta[:, k]) for k in range(K)])
        omegaInv = np.stack([m.inv(omega[k]) for k in range(K)])
        for t in range(T):
            for k in range(K):
                theta[t, k] = omegaInv[k] @ theta[t, k]

        # re-estimate S
        if K > 0: S = np.array([SED.inferSk(o, theta[:, k]) for k in range(K)])
        else: S = np.zeros((0, o.dxA, o.dxA))

        # re-compute LL
        d = sample
        o, alpha, z, pi, E, x, Q, mL, llOld = \
          (d['o'], d['alpha'], d['z'], d['pi'], d['E'], d['x'],
           d['Q'], d['mL'], d['ll'])
        subsetIdx, dataset = (d.get('subsetIdx', None), d.get('dataset', None))

        data = du.load(f'{dataset}/data')
        yAll = data['y']
        if subsetIdx is not None:
            y = [yt[subsetIdx[t]] for t, yt in enumerate(yAll)]
        else:
            y = yAll

        ll = SED.logJoint(o, y, z, x, theta, E, S, Q, alpha, pi, omega, mL)
        # print(llOld, ll)

        path, base, _ = du.fileparts(str(f))

        SED.saveSample(f'{path}/{base}', o, alpha, z, pi, theta, E, S, x, Q,
                       omega, mL, ll, subsetIdx, dataset)
Esempio n. 2
0
def test_optimize_omega():
  sample = 'omega/se2_waving_hand/001/init.gz'
  o, alpha, z, pi, theta, E, S, x, Q, omega, mL, ll, subsetIdx, datasetPath = \
    SED.loadSample(sample) 

  data = du.load(f'{datasetPath}/data')
  yAll = data['y']
  T = len(z)
  K = theta.shape[1]
  if subsetIdx is not None:
    y = [yt[subsetIdx[t]] for t, yt in enumerate(yAll)]

  # omegaNew = np.zeros_like(omega)
  # # for k in range(K):
  # for k in range(0,1):
  #   yk = [ y[t][z[t]==k] for t in range(T) ]
  #   theta_k = theta[:,k]
  #   omegaNew[k] = icp.optimize_omega(o, yk, x, theta_k, E[k])

  t = 2
  x_t, theta_t = icp.optimize_t(o, y[t], x[t-1], omega, theta[t-1], E, S, Q)

  omegaTheta_t = theta_t.copy()
  for k in range(K): omegaTheta_t[k] = omega[k] @ omegaTheta_t[k]
  draw.draw_t(o, y=y[t], x=x_t, theta=omegaTheta_t, E=E)
Esempio n. 3
0
def test_optimize_all():
  sample = 'omega/se2_waving_hand/001/init.gz'
  o, alpha, z, pi, theta, E, S, x, Q, omega, mL, ll, subsetIdx, datasetPath = \
    SED.loadSample(sample) 

  data = du.load(f'{datasetPath}/data')
  yAll = data['y']
  T = len(z)
  K = theta.shape[1]
  if subsetIdx is not None:
    y = [yt[subsetIdx[t]] for t, yt in enumerate(yAll)]

  basePath = 'optimize/se2_waving_hand/001'
  def callback(s, v, cost, x, omega, theta):
    z = [ SED.inferZ(o, y[t], pi, theta[t], E, x[t], omega, mL[t])
      for t in range(T) ]
    z, pi_, theta_, omega_, E_, S_ = SED.consolidatePartsAndResamplePi(o, z, pi,
      alpha, theta, omega, E, S)
    ll = SED.logJoint(o, y, z, x, theta_, E_, S_, Q, alpha, pi_, omega_, mL)

    extra = dict(s=s, v=v, cost=cost)
    filename = f'{basePath}/optimize-{s:05}'
    SED.saveSample(filename, o, alpha, z, pi_, theta_, E_, S_, x, Q, omega_, mL,
      ll, subsetIdx, datasetPath, extra=extra)

  s, v, cost, x, omega, theta = icp.optimize_all(o, y, E, S, Q,
    callback=callback, callbackInterval=1)
Esempio n. 4
0
def main(args):
  # load previous sample
  o, alpha, z, pi, theta, E, S, x, Q, omega, mL, llInit, subsetIdx, dataset = \
    SED.loadSample(args.initialSample)

  # recursively make output path ignoring if it's already been created
  try: os.makedirs(args.outdir)
  except: pass

  # load data
  data = du.load(f'{dataset}/data')
  yAll = data['y']
  if subsetIdx is not None: y = [yt[subsetIdx[t]] for t, yt in enumerate(yAll)]
  else: y = yAll

  print(f'Initializing, LL: {llInit:.2f}, K: {len(pi)-1}')

  ll = np.zeros(args.nSamples) 

  # rjmcmc moves (todo: make as args)
  # pBirth, pDeath, pSwitch = (0.1, 0.1, 0.0)
  # pBirth, pDeath, pSwitch = (0.0, 0.0, 0.0)
  pBirth, pDeath, pSwitch = (args.pBirth, args.pDeath, args.pSwitch)

  # rjmcmc proposal tracking
  nBirthProp, nBirthAccept, nDeathProp, nDeathAccept = (0, 0, 0, 0)
  nSwitchProp, nSwitchAccept = (0, 0)

  sampleRng = range(args.firstSampleIndex, args.firstSampleIndex+args.nSamples)
  for cnt, nS in enumerate(sampleRng):
    du.tic()
    z, pi, theta, E, S, x, Q, omega, mL, move, accept = SED.sampleRJMCMC(o, y,
      alpha, z, pi, theta, E, S, x, Q, omega, mL, pBirth, pDeath, pSwitch)
    ll[cnt] = SED.logJoint(o, y, z, x, theta, E, S, Q, alpha, pi, omega, mL)
    # print(du.toc())

    if move == 'birth':
      nBirthProp += 1
      if accept: nBirthAccept += 1
    elif move == 'death':
      nDeathProp += 1
      if accept: nDeathAccept += 1
    elif move == 'switch':
      nSwitchProp += 1
      if accept: nSwitchAccept += 1

    a = '+' if accept == True else '-'
    if not args.silent:
      print(f'{args.outdir}, Iter {nS:05}, LL: {ll[cnt]:.2f}, K: {len(pi)-1}, Move: {move[0]}{a}')

    if cnt % args.saveEvery == 0:
      filename = f'{args.outdir}/sample-{nS:08}'
      SED.saveSample(filename, o, alpha, z, pi, theta, E, S, x, Q, omega, mL,
        ll[cnt], subsetIdx, dataset)
Esempio n. 5
0
def main(args):

  if args.sampleIdx is not None:
    samples = du.GetFilePaths(f'{args.resultPath}', 'gz')
    o, alpha, z, pi, theta, E, S, x, Q, omega, mL, ll, subsetIdx, datasetPath = \
      SED.loadSample(samples[int(args.sampleIdx)])
  else:
    o, alpha, z, pi, theta, E, S, x, Q, omega, mL, ll, subsetIdx, datasetPath = \
      SED.loadSample(args.resultPath)

  data = du.load(f'{datasetPath}/data')
  yAll = data['y']
  m = getattr(lie, o.lie)

  T = len(z)
  K = theta.shape[1]

  if args.drawMesh:
    meshFiles = du.GetFilePaths(f'{datasetPath}/mesh', 'obj')[:T]
    mesh = du.Parfor(tm.load, meshFiles)
    y = [ mesh[t].vertices for t in range(T) ]
    mL_const = np.mean([np.mean(mL[t]) for t in range(T)])
    mL = [ mL_const*np.ones(y[t].shape[0]) for t in range(T) ]

    for t in range(T):
      z[t] = SED.inferZ(o, y[t], pi, theta[t], E, x[t], omega, mL[t], max=args.maxZ)
  
  elif args.no_resampleZ:
    if subsetIdx is not None:
      y = [yt[subsetIdx[t]] for t, yt in enumerate(yAll)]
    else:
      y = yAll
  else:
    # don't use subsetIdx
    y = yAll
    mL_const = np.mean([np.mean(mL[t]) for t in range(T)])
    mL = [ mL_const*np.ones(y[t].shape[0]) for t in range(T) ]

    if args.maxZ: max=True
    else: max=False

    for t in range(T):
      z[t] = SED.inferZ(o, y[t], pi, theta[t], E, x[t], omega, mL[t], max=args.maxZ)

  # omegaTheta
  if args.omega:
    theta = np.tile(omega, (T,1,1,1))
  else:
    for t in range(T):
      for k in range(K):
        theta[t,k] = omega[k] @ theta[t,k]


  if args.noE: E = None
  if args.noTheta: theta = None
  if args.noZ: z = None
  noX = args.noX
  if args.noTitle: title = [ f'' for t in range(T) ]
  else: title = [ f'{t:05}' for t in range(T) ]

  if args.decimate > 0:
    nPts = args.decimate
    print('decimate')
    for t in range(T):
      decimateIdx = np.random.choice(range(len(y[t])), nPts)
      y[t] = y[t][decimateIdx]
      if z is not None: z[t] = z[t][decimateIdx]

  if args.wiggle:
    from scipy.stats import multivariate_normal as mvn
    for t in range(T):
      y[t] += mvn.rvs(np.zeros(3), args.wiggle_eps*np.eye(3), size=y[t].shape[0])
    # if theta is not None: theta[0,0][1,3] += 0.2

  if args.save:
    try: os.makedirs(args.save)
    except: pass
    fnames = [ f'{args.save}/img-{t:05}.png' for t in range(T) ]
  else:
    fnames = None

  def getImgs(path):
    imgPaths = du.GetImgPaths(imgPath)
    if len(imgPaths) > 100:
      du.imread(imgPaths[0]); imgs = du.ParforT(du.imread, imgPaths)
    else:
      imgs = du.For(du.imread, imgPaths)
    return imgs
  
  # three cases
  #   se2, se3 + draw2d, se3
  if o.lie == 'se2':
    imgPath = f'{datasetPath}/imgs'
    if isdir(imgPath): imgs = getImgs(imgPath)
    else: imgs = None

    scenes_or_none = drawSED.draw(o, y=y, x=x, theta=theta, E=E, img=imgs, z=z,
      filename=fnames, noX=noX, title=title)
    if not args.save: plt.show()

  elif o.lie == 'se3' and not args.draw2d and not args.drawMesh:
    scenes = drawSED.draw(o, y=y, x=x, theta=theta, E=E, z=z, noX=noX, title=title)
    transform = tmu.CameraFromScenes(scenes)

    # set transform as 1.25 of min z. This is specific to se3_marmoset for now
    #   multiply instead of divide because maybe camera is looking backwards?
    for scene in scenes:
      transform_t = scene.camera.transform.copy()
      transform_t[2,3] = transform[2,3] * 1.25
      scene.camera.transform = transform_t

    if args.save:
      for t in range(T): tmu.save_render(scenes[t], fnames[t])
    else:

      if args.single_frame:
        t = 0
        tmu.show_scene_with_bindings(scenes[t], res=[1920,1080])
      else:
        for t in range(T): tmu.show_scene_with_bindings(scenes[t], res=[1920,1080])

  elif o.lie == 'se3' and args.drawMesh:
    meshFiles = du.GetFilePaths(f'{datasetPath}/mesh', 'obj')[:T]
    mesh = du.Parfor(tm.load, meshFiles)

    mL_const = np.mean([np.mean(mL[t]) for t in range(T)])
    zCols = (255*du.diffcolors(100, bgCols=[[1,1,1],[0,0,0]], alpha=1.0)).astype(np.uint8)
    zColsFloat = du.diffcolors(100, bgCols=[[1,1,1],[0,0,0]], alpha=1.0)

    for t in range(T):
      mesh[t].visual.vertex_colors = zCols[z[t]]

    # draw but don't render scenes just to get camera
    scenes = drawSED.draw(o, y=y)
    transform = tmu.CameraFromScenes(scenes)

    # same colors as drawSED
    for t in range(T):
      scene = tm.scene.Scene()
      scene.add_geometry(mesh[t])

      # scene = mesh[t]
      transform_t = scene.camera.transform.copy()
      transform_t[2,3] = transform[2,3] * 1.5
      transform_t[2,2] = transform[2,2]
      scene.camera.transform = transform_t

      if not args.noX:
        scene.add_geometry(tmu.MakeAxes(0.2, x[t], np.tile([0, 0, 0, 255],
          [4,1]).astype(np.int), minor=0.01))


      if not args.orbit:
        if args.save:
          tmu.save_render(scene, fnames[t], res=[1920,1080])
        else:
          scene.show()
      else:
        nCams = 8
        cams = tmu.MakeCamerasOrbit(scene, nCams)

        for i in range(nCams):
          print('Time {t}, Cam {i}')
          cam = cams[i] @ transform_t
          scene.camera.transform = cam
          fname = f'{args.save}/camera-{i:02}-img-{t:05}.png' 
          tmu.save_render(scene, fname, res=[1920,1080])
    
    # re-associate to mesh vertices

  elif o.lie == 'se3' and args.draw2d:
    imgPath = f'{datasetPath}/rgb'
    assert isdir(imgPath)
    imgs = getImgs(imgPath)

    yImg = [ ]

    for t in range(T):
      mask = data['mask'][t]

      # get ordered image indices
      h, w = imgs[0].shape[:2]
      yy, xx = np.meshgrid(range(h), range(w), indexing='ij')
      xy = np.stack((xx.flatten(),yy.flatten()), axis=1) # N x 2
      xyFG = xy[mask.flatten()]
      idx_t = data['idx'][t] # indexes into xy

      if subsetIdx is not None and args.no_resampleZ:
        subsetIdx_t = subsetIdx[t]
        idx_t = idx_t[subsetIdx_t]
      # ip.embed()
      xyFG = xyFG[ idx_t ]
      yImg.append(xyFG)
    
    # make fake options with se2 for display
    oImg = SED.opts(lie='se2')
    drawSED.draw(oImg, y=yImg, z=z, img=imgs, filename=fnames, noX=noX, title=title)
    if not args.save: plt.show()
Esempio n. 6
0
def main(args):
    # load previous sample
    o, alpha, z, pi, theta, E, S, x, Q, omega, mL, ll, subsetIdx, dataset = \
      SED.loadSample(args.sample)
    K = len(pi) - 1
    assert dataset

    # load ground-truth labels
    gtData = du.load(f'{dataset}/gtLabels')
    gtLabels, gtIdx = (gtData['labels'], gtData['gtIdx'])
    T, h, w = gtLabels.shape

    # load dataset, take max assignments
    data = du.load(f'{dataset}/data')
    y = data['y']

    # make mL so it is the right size
    mL_const = np.mean([np.mean(mL[t]) for t in range(T)])
    mL = [mL_const * np.ones(y[t].shape[0]) for t in range(T)]
    z = [
        SED.inferZ(o, y[t], pi, theta[t], E, x[t], omega, mL[t], max=True)
        for t in range(T)
    ]

    # precompute image indices for se3
    if o.lie == 'se3':
        yy, xx = np.meshgrid(range(h), range(w), indexing='ij')
        xy = np.stack((xx.flatten(), yy.flatten()), axis=1)  # N x 2

    # construct stacked label images for sample
    sampleLabels = np.zeros((T, h, w))
    for t in range(T):

        if o.lie == 'se3':
            idx, mask = (data['idx'][t], data['mask'][t])

            # idx_t = data['idx'][t] # indexes into xy
            # mask = data['mask'][t]
            xyFG = xy[mask.flatten()]
            xyFG = xyFG[idx]  # lines up with z labels now

            xs, ys = xyFG.T
        else:
            xs, ys = y[t].T.astype(np.int)

        for k in range(K):
            ztk = z[t] == k
            sampleLabels[t, ys[ztk], xs[ztk]] = k + 1

    # du.ViewImgs(sampleLabels)
    # ip.embed()
    # sys.exit()

    # Have groundtruth and label images, call comparison
    iou = args.iou
    tp, fp, fn, ids, tilde_tp, motsa, motsp, s_motsa = \
      evalSED.mots(sampleLabels, gtData, iou=iou)

    name = du.fileparts(dataset)[1]
    header1 = f'{name}, iou: {iou:.1f}'
    header2 = 'tp & fp & fn & ids & tilde_tp & motsa & motsp & smotsa \\\\'
    values = f'{tp} & {fp} & {fn} & {ids:03} & {tilde_tp:.2f} & {motsa:.2f} & {motsp:.2f} & {s_motsa:.2f}'
    print(header1)
    print(header2)
    print(values)
Esempio n. 7
0
def main(args):
    data = du.load(f'{args.dataset_path}/data')
    yAll = data['y']
    T = len(yAll)
    ts = range(T)

    if args.maxObs > 0:
        subsetIdx = [
            np.random.choice(range(len(yt)),
                             min(args.maxObs, len(yt)),
                             replace=False) for yt in yAll
        ]
        y = [yt[subsetIdx[t]] for t, yt in enumerate(yAll)]
    else:
        subsetIdx = [np.arange(len(yt)) for yt in yAll]
        y = yAll

    mL = [args.mL * np.ones(y[t].shape[0]) for t in range(T)]
    if args.se3: o = SED.opts(lie='se3')
    else: o = SED.opts(lie='se2')
    SED.initPriorsDataDependent(o,
                                y,
                                dfQ=args.dfQ,
                                rotQ=args.rotQ,
                                dfS=args.dfS,
                                rotS=args.rotS,
                                dfE=args.dfE,
                                scaleE=args.scaleE,
                                rotX=args.rotX,
                                rotOmega=args.rotOmega)
    x_ = SED.initXDataMeans(o, y)
    Q = SED.inferQ(o, x_)

    if args.tInit == -1: tInit = np.random.choice(range(T))
    else: tInit = args.tInit

    ###
    # yt = y[tInit]
    # from mpl_toolkits.mplot3d import Axes3D
    # fig = plt.figure()
    # ax = fig.add_subplot(111, projection='3d')
    # ax.scatter(yt[:,0], yt[:,1], yt[:,2], s=1)
    # plt.show()
    #
    # ip.embed()
    # sys.exit()
    ###

    # theta_, omega0, E, S, z, pi = SED.initPartsAndAssoc(o, y[tInit:tInit+1], x_,
    #   args.alpha, mL, maxBreaks=args.maxBreaks, nInit=args.nInit,
    #   nIter=args.nIter, tInit=args.tInit, fixedBreaks=args.fixedBreaks
    # )
    theta_, omega0, E, S, z, pi = SED.initPartsAndAssoc(
        o,
        y[tInit:tInit + 1],
        x_,
        args.alpha,
        mL,
        maxBreaks=args.maxBreaks,
        nInit=args.nInit,
        nIter=args.nIter,
        fixedBreaks=args.fixedBreaks)
    K = len(pi) - 1
    print(f'Initialized with {K} parts at time {tInit}')
    omegaTheta0_ = np.stack([omega0[k] @ theta_[0, k] for k in range(K)])

    # get omegaTheta parts and global for all time
    theta = np.zeros((T, K) + o.dxGm)
    # theta[tInit] = theta_[0]
    theta[tInit] = omegaTheta0_
    x = np.zeros((T, ) + o.dxGm)
    x[tInit] = x_[0]

    m = getattr(lie, o.lie)

    def estimate_global_then_parts(tPrev, tNext):
        # 0 -> 1, 1 -> 2, ...
        yPrev, yNext = (y[tPrev], y[tNext])
        xPrev = x[tPrev]
        thetaPrev = theta[tPrev]

        # Initialize relative body transformation from tPrev -> tNext as
        # translation between observation means (with no rotation).
        muDiff = np.mean(yNext, axis=0) - np.mean(yPrev, axis=0)
        Q_t0 = SED.MakeRd(np.eye(o.dy), muDiff)
        q_t0 = m.algi(m.logm(Q_t0))

        # Estimate body frame
        Q_t = icp.optimize_global(o, yNext, xPrev, thetaPrev, E, q_t=q_t0)
        x[tNext] = xNext = xPrev @ Q_t

        # Estimate omegaTheta with body frame
        S_t = icp.optimize_local(o, yNext, xNext, thetaPrev, E, S)
        for k in range(K):
            theta[tNext, k] = theta[tPrev, k] @ S_t[k]

    # reverse direction
    # for (tInit, tInit-1) ... (1, 0)
    du.tic()
    for tPrev, tNext in zip(reversed(ts[:tInit]), reversed(ts[1:tInit + 1])):
        print(f'Optimizing Global then Local from time {tNext:03} to {tPrev:03}. ' + \
          f'Elapsed: {du.toc():.2f} seconds')
        estimate_global_then_parts(tNext, tPrev)

    # forward direction
    for tPrev, tNext in zip(ts[tInit:-1], ts[tInit + 1:]):
        print(f'Optimizing Global then Local from time {tPrev:03} to {tNext:03}. ' + \
          f'Elapsed: {du.toc():.2f} seconds')
        estimate_global_then_parts(tPrev, tNext)

    print(f'Optimizing Global then Local for time {tInit:03}. ' + \
      f'Elapsed: {du.toc():.2f} seconds')
    if tInit > 0: estimate_global_then_parts(tInit - 1, tInit)
    else: estimate_global_then_parts(0, 0)

    # separate out omega and omega
    omega = np.stack([m.karcher(theta[:, k]) for k in range(K)])
    omegaInv = [m.inv(omega[k]) for k in range(K)]
    for t in range(T):
        for k in range(K):
            theta[t, k] = omegaInv[k] @ theta[t, k]

    # Re-estimate z, pi; remove unused parts (if any)
    z = [[] for t in range(T)]
    for t in range(T):
        z[t] = SED.inferZ(o, y[t], pi, theta[t], E, x[t], omega, mL[t])
    z, pi, theta, omega, E, S = SED.consolidatePartsAndResamplePi(
        o, z, pi, args.alpha, theta, omega, E, S)

    # Re-estimate Q, S, E
    Q = SED.inferQ(o, x)
    if K > 0: S = np.array([SED.inferSk(o, theta[:, k]) for k in range(K)])
    else: S = np.zeros((0, o.dxA, o.dxA))
    E = SED.inferE(o, x, theta, omega, y, z)

    # Compute log-likelihood
    ll = SED.logJoint(o, y, z, x, theta, E, S, Q, args.alpha, pi, omega, mL)

    # Save results
    SED.saveSample(args.outfile, o, args.alpha, z, pi, theta, E, S, x, Q,
                   omega, mL, ll, subsetIdx, args.dataset_path)