Esempio n. 1
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof.L) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    z1 = Scalar(0)
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN
    scalars = ScalarVector([]) # for final check
    points = PointVector([]) # for final check

    # run through each proof
    for proof in proofs:
        tr = transcript.Transcript('Bulletproof')

        V = proof.V
        A = proof.A
        S = proof.S
        T1 = proof.T1
        T2 = proof.T2
        taux = proof.taux
        mu = proof.mu
        L = proof.L
        R = proof.R
        a = proof.a
        b = proof.b
        t = proof.t

        # get size information
        M = 2**len(L)/N

        # weighting factors for batching
        weight_y = random_scalar()
        weight_z = random_scalar()
        if weight_y == Scalar(0) or weight_z == Scalar(0):
            raise ArithmeticError

        # reconstruct challenges
        for v in V:
            tr.update(v)
        tr.update(A)
        tr.update(S)
        y = tr.challenge()
        if y == Scalar(0):
            raise ArithmeticError
        y_inv = y.invert()
        z = tr.challenge()
        if z == Scalar(0):
            raise ArithmeticError
        tr.update(T1)
        tr.update(T2)
        x = tr.challenge()
        if x == Scalar(0):
            raise ArithmeticError
        tr.update(taux)
        tr.update(mu)
        tr.update(t)
        x_ip = tr.challenge()
        if x_ip == Scalar(0):
            raise ArithmeticError

        y0 += taux*weight_y
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*weight_y

        for j in range(M):
            scalars.append(z**(j+2)*weight_y)
            points.append(V[j]*Scalar(8))
        scalars.append(x*weight_y)
        points.append(T1*Scalar(8))
        scalars.append(x**2*weight_y)
        points.append(T2*Scalar(8))

        scalars.append(weight_z)
        points.append(A*Scalar(8))
        scalars.append(x*weight_z)
        points.append(S*Scalar(8))

        # inner product
        W = ScalarVector([])
        for i in range(len(L)):
            tr.update(L[i])
            tr.update(R[i])
            W.append(tr.challenge())
            if W[i] == Scalar(0):
                raise ArithmeticError
        W_inv = W.invert()

        for i in range(M*N):
            index = i
            g = a
            h = b*((y_inv)**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W_inv[J]
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W_inv[J]
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y_inv)**i)

            z4[i] += g*weight_z
            z5[i] += h*weight_z

        z1 += mu*weight_z

        for i in range(len(L)):
            scalars.append(W[i]**2*weight_z)
            points.append(L[i]*Scalar(8))
            scalars.append(W_inv[i]**2*weight_z)
            points.append(R[i]*Scalar(8))
        z3 += (t-a*b)*x_ip*weight_z
    
    # now check all proofs together
    scalars.append(-y0-z1)
    points.append(Gc)
    scalars.append(-y1+z3)
    points.append(Hc)
    for i in range(max_MN):
        scalars.append(-z4[i])
        points.append(Gi[i])
        scalars.append(-z5[i])
        points.append(Hi[i])

    if not dumb25519.multiexp(scalars,points) == Z:
        raise ArithmeticError('Bad verification!')

    return True
Esempio n. 2
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof[7]) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    G = dumb25519.G
    H = hash_to_point('pybullet H')
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    z1 = Scalar(0)
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN
    scalars = ScalarVector([]) # for final check
    points = PointVector([]) # for final check

    # run through each proof
    for proof in proofs:
        clear_cache()

        V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof

        # get size information
        M = 2**len(L)/N

        # weighting factors for batching
        weight_y = random_scalar()
        weight_z = random_scalar()
        if weight_y == Scalar(0) or weight_z == Scalar(0):
            raise ArithmeticError

        # reconstruct all challenges
        for v in V:
            mash(v)
        mash(A)
        mash(S)
        if cache == Scalar(0):
            raise ArithmeticError
        y = cache
        y_inv = y.invert()
        mash('')
        if cache == Scalar(0):
            raise ArithmeticError
        z = cache
        mash(T1)
        mash(T2)
        if cache == Scalar(0):
            raise ArithmeticError
        x = cache
        mash(taux)
        mash(mu)
        mash(t)
        if cache == Scalar(0):
            raise ArithmeticError
        x_ip = cache

        y0 += taux*weight_y
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*weight_y

        for j in range(M):
            scalars.append(z**(j+2)*weight_y)
            points.append(V[j]*Scalar(8))
        scalars.append(x*weight_y)
        points.append(T1*Scalar(8))
        scalars.append(x**2*weight_y)
        points.append(T2*Scalar(8))

        scalars.append(weight_z)
        points.append(A*Scalar(8))
        scalars.append(x*weight_z)
        points.append(S*Scalar(8))

        # inner product
        W = ScalarVector([])
        for i in range(len(L)):
            mash(L[i])
            mash(R[i])
            if cache == Scalar(0):
                raise ArithmeticError
            W.append(cache)
        W_inv = W.invert()

        for i in range(M*N):
            index = i
            g = a
            h = b*((y_inv)**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W_inv[J]
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W_inv[J]
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y_inv)**i)

            z4[i] += g*weight_z
            z5[i] += h*weight_z

        z1 += mu*weight_z

        for i in range(len(L)):
            scalars.append(W[i]**2*weight_z)
            points.append(L[i]*Scalar(8))
            scalars.append(W_inv[i]**2*weight_z)
            points.append(R[i]*Scalar(8))
        z3 += (t-a*b)*x_ip*weight_z
    
    # now check all proofs together
    scalars.append(-y0-z1)
    points.append(G)
    scalars.append(-y1+z3)
    points.append(H)
    for i in range(max_MN):
        scalars.append(-z4[i])
        points.append(Gi[i])
        scalars.append(-z5[i])
        points.append(Hi[i])

    if not dumb25519.multiexp(scalars,points) == Z:
        raise ArithmeticError('Bad z check!')

    return True
Esempio n. 3
0
 def test_8_random(self):
     data = [[random_point(),random_scalar()] for i in range(8)]
     result = Z
     for datum in data:
         result += datum[0]*datum[1]
     self.assertEqual(dumb25519.multiexp(data),result)
Esempio n. 4
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof[7]) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    G = dumb25519.G
    H = dumb25519.H
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # verify that all points are in the correct subgroup
    for item in dumb25519.flatten(proofs):
        if not isinstance(item,Point):
            continue
        if not item*Scalar(dumb25519.l) == Z:
            raise ArithmeticError

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    Y2 = Z
    Y3 = Z
    Y4 = Z
    Z0 = Z
    z1 = Scalar(0)
    Z2 = Z
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN

    # run through each proof
    for proof in proofs:
        clear_cache()

        V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof

        # get size information
        M = 2**len(L)/N

        # weighting factor for batching
        w = random_scalar()

        # reconstruct all challenges
        for v in V:
            mash(v)
        mash(A)
        mash(S)
        y = cache
        mash('')
        z = cache
        mash(T1)
        mash(T2)
        x = cache
        mash(taux)
        mash(mu)
        mash(t)
        x_ip = cache

        y0 += taux*w
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*w

        Temp = Z
        for j in range(M):
            Temp += V[j]*(z**(j+2)*Scalar(8))
        Y2 += Temp*w
        Y3 += T1*(x*w*Scalar(8))
        Y4 += T2*((x**2)*w*Scalar(8))

        Z0 += (A*Scalar(8)+S*(x*Scalar(8)))*w

        # inner product
        W = []
        for i in range(len(L)):
            mash(L[i])
            mash(R[i])
            W.append(cache)

        for i in range(M*N):
            index = i
            g = a
            h = b*((y.invert())**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W[J].invert()
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W[J].invert()
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y.invert())**i)

            z4[i] += g*w
            z5[i] += h*w

        z1 += mu*w

        Multiexp = []
        for i in range(len(L)):
            Multiexp.append([L[i],Scalar(8)*(W[i]**2)])
            Multiexp.append([R[i],Scalar(8)*(W[i].invert()**2)])
        Z2 += dumb25519.multiexp(Multiexp)*w
        z3 += (t-a*b)*x_ip*w
    
    # now check all proofs together
    if not G*y0 + H*y1 - Y2 - Y3 - Y4 == Z:
        raise ArithmeticError('Bad y check!')

    Multiexp = [[Z0,Scalar(1)],[G,-z1],[Z2,Scalar(1)],[H,z3]]
    for i in range(max_MN):
        Multiexp.append([Gi[i],-z4[i]])
        Multiexp.append([Hi[i],-z5[i]])
    if not dumb25519.multiexp(Multiexp) == Z:
        raise ArithmeticError('Bad z check!')

    return True
Esempio n. 5
0
 def test_2_G_2_G_n1(self):
     data = [[G,Scalar(2)],[G,Scalar(-1)]]
     self.assertEqual(dumb25519.multiexp(data),G)
Esempio n. 6
0
 def test_2_G_1_H_2(self):
     data = [[G,Scalar(1)],[H,Scalar(2)]]
     self.assertEqual(dumb25519.multiexp(data),G+H*Scalar(2))
Esempio n. 7
0
 def test_1_G_2(self):
     data = [[G,Scalar(2)]]
     self.assertEqual(dumb25519.multiexp(data),G*Scalar(2))
Esempio n. 8
0
 def test_1_G_0(self):
     data = [[G,Scalar(0)]]
     self.assertEqual(dumb25519.multiexp(data),Z)
Esempio n. 9
0
 def test_0(self):
     self.assertEqual(dumb25519.multiexp([]),Z)