Esempio n. 1
0
            def kernel(self, inputs):
                x = inputs['image']
                x = Tensor(tf.cast(x.data, tf.float32))
                label = inputs['label']
                label = Tensor(tf.cast(label.data, tf.float32))
                label = tf.reshape(label.data, (32, 1))

                h = self.get_or_create_graph('layer0',
                                             Dense(
                                                 'dense0',
                                                 n_units=32,
                                                 activation='relu'))(
                                                     tf.layers.flatten(x.data))
                y_ = self.get_or_create_graph('layer1',
                                              Dense(
                                                  'dense1',
                                                  n_units=10,
                                                  activation='relu'))(h)

                y = self.get_or_create_graph('layer3',
                                             Dense(
                                                 'dense2',
                                                 n_units=10,
                                                 activation='relu'))(label)
                return {
                    'inference' : y_,
                    'label' : y
                }
Esempio n. 2
0
def post_processing(dataset, padding_size):
    hits = dataset.tensors['hits']
    shape = shape_list(hits.data)
    shape[1] = padding_size

    hits = Tensor(tf.reshape(hits.data, shape))
    label = Tensor(
        OneHot(padding_size)(dataset.tensors['first_hit_index'].data))
    return DatasetIncidentSingle(hits, label, dataset.tensors['padded_size'])
Esempio n. 3
0
 def _convert(self, v):
     result = Tensor(v)
     if self.config(self.KEYS.CONFIG.BATCH_SIZE) is not None:
         shape = result.data.shape.as_list()
         shape[0] = self.config(self.KEYS.CONFIG.BATCH_SIZE)
         if shape.count(None) == 1:
             shape[shape.index(None)] = -1
         result = Tensor(tf.reshape(result.data, shape))
     return result
Esempio n. 4
0
def main_basic(job, task):
    cfg = {"worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'worker', 0)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host1 = Host(job, 1)
    hmi = DistributeGraphInfo(None, None, None, master_host)
    with tf.variable_scope('scope_test'):
        t0 = TensorVariable(VariableInfo(None, [1], tf.float32),
                            hmi.update(name='v0'))
        aop = tf.assign(t0.data, tf.constant([3.]))
        t1 = TensorNumpyNDArray([1.0], None,
                                hmi.update(name='v1'))
        t1c = t1.copy_to(host1)
        t1p = Tensor(t1c.data + 1, t1c.data_info,
                     t1c.graph_info.update(name='t1_plus'))
    make_distribute_session()
    if task == 0:
        ptensor(t1)
        Server.join()
    if task == 1:
        ptensor(t1)
        ptensor(t1c)
        ptensor(t1p)
        ptensor(t0)
        ThisSession.run(aop)
        ptensor(t0)
Esempio n. 5
0
def dataset_fast(path_table, batch_size, is_shuffle, nb_hits, is_train):
    table = ShuffledHitsTable(path_table)
    padding_size = table.padding_size
    table = filter_by_nb_hits(table, nb_hits)
    # table = drop_padded_hits(table, nb_hits)
    if is_train is not None:
        table = ShuffledHitsColumns(
            table.dataclass,
            list(Train80Partitioner(is_train).partition(table)))
    dtypes = {
        'hits': np.float32,
        'first_hit_index': np.int32,
        'padded_size': np.int32,
    }
    data = {
        k: np.array([getattr(table.data[i], k) for i in range(table.capacity)],
                    dtype=dtypes[k])
        for k in table.columns
    }
    dataset = tf.data.Dataset.from_tensor_slices(data)
    dataset = dataset.repeat()
    if is_shuffle:
        dataset = dataset.shuffle(4 * batch_size)
    dataset = dataset.batch(batch_size)
    tensors = dataset.make_one_shot_iterator().get_next()
    for k in tensors:
        tensors[k] = Tensor(tensors[k])
    tensors['first_hit_index'] = OneHot(tensors['hits'].shape[1])(
        tensors['first_hit_index'])
    return DatasetIncidentSingle(tensors['hits'], tensors['first_hit_index'],
                                 tensors['padded_size'])
Esempio n. 6
0
    def kernel(self, inputs):
        # the default order of the image is z-dominant(z,y,x)
        # for projection another two images are created.
        img = inputs[self.KEYS.TENSOR.IMAGE].data

        effmap = inputs[self.KEYS.TENSOR.EFFICIENCY_MAP].data

        sinos = inputs[self.KEYS.TENSOR.SINOGRAM].data
        matrixs = inputs[self.KEYS.TENSOR.SYSTEM_MATRIX].data
        tran_matrixs = tf.sparse_transpose(matrixs)
       
        """
        The following codes need rewrite
        """
        proj = tf.sparse_tensor_dense_matmul(matrixs,img)
        con = tf.ones(proj.shape)/100000000
        proj = proj+con
        temp_proj = sinos/proj         
        temp_bp = tf.sparse_tensor_dense_matmul(tran_matrixs,temp_proj)
        result = img / effmap * temp_bp
        #result = img * temp_bp
        #result = result / tf.reduce_sum(result) * tf.reduce_sum(sinos)
        ###efficiencymap
        #result = tf.sparse_tensor_dense_matmul(tran_matrixs,sinos)
        
        return Tensor(result, None, self.graph_info.update(name=None))
Esempio n. 7
0
 def projection(self, image, lors):
     lors = lors.transpose()
     return Tensor(Op.get_module().projection(
         lors=lors.data,
         image=image.data,
         grid=image.grid,
         center=image.center,
         size=image.size,
         tof_bin=self.config(self.KEYS.TOF_BIN),
         tof_sigma2=self.config(self.KEYS.TOF_SIGMA2)))
Esempio n. 8
0
 def maplors(self, lors, image: Image):
     lors_value = lors['lors_value']
     lors = lors['lors']
     lors = lors.transpose()
     result = Tensor(Op.get_module().maplors(image=image.data,
                                             grid=image.grid,
                                             center=image.center,
                                             size=image.size,
                                             lors=lors.data,
                                             lors_value=lors_value.data))
     return result
Esempio n. 9
0
 def projection(self, image, lors):
     lors = lors.transpose()
     return Tensor(Op.get_module().projection_gpu(
         lors=lors.data,
         image=image.data,
         grid=image.grid[::-1],
         center=image.center[::-1],
         size=image.size[::-1],
         kernel_width=self.config(self.KEYS.KERNEL_WIDTH),
         tof_bin=self.config(self.KEYS.TOF_BIN),
         tof_sigma2=self.config(self.KEYS.TOF_SIGMA2)))
Esempio n. 10
0
 def backprojection(self, lors, image: Image):
     lors_value = lors['lors_value']
     lors = lors['lors']
     lors = lors.transpose()
     result = Tensor(Op.get_module().backprojection_gpu(
         image=image.data,
         grid=image.grid[::-1],
         center=image.center[::-1],
         size=image.size[::-1],
         lors=lors.data,
         lors_value=lors_value.data,
         kernel_width=self.config(self.KEYS.KERNEL_WIDTH)))
     return result
Esempio n. 11
0
 def backprojection(self, lors, image):
     lors_value = lors['lors_value']
     lors = lors['lors']
     lors = lors.transpose()
     result = Tensor(Op.get_module().backprojection(
         image=image.data,
         grid=image.grid,
         center=image.center,
         size=image.size,
         lors=lors.data,
         lors_value=lors_value.data,
         tof_bin=self.config(self.KEYS.TOF_BIN),
         tof_sigma2=self.config(self.KEYS.TOF_SIGMA2)))
     return result
Esempio n. 12
0
 def kernel(self, inputs):
     if len(inputs) == 0:
         return None
     ip: tf.Tensor = inputs[self.KEYS.TENSOR.INPUT].data
     ip_shape = ip.shape.as_list()
     size = ip_shape[0] // self._nb_split
     result = {}
     for i in range(self._nb_split):
         result['slice_{}'.format(i)] = tf.slice(ip, [size * i, 0],
                                                 [size, ip_shape[1]])
     ginfo = inputs[self.KEYS.TENSOR.INPUT].graph_info
     result = {
         k: Tensor(result[k], None,
                   ginfo.update(name=ginfo.name + '_{}'.format(k)))
         for k in result
     }
     return result
Esempio n. 13
0
 def kernel(self, inputs):
     if len(inputs) == 0:
         return None
     data: tf.Tensor = inputs[self.KEYS.TENSOR.INPUT].data
     data_shape = data.shape.as_list()
     size = data_shape[0] // self._nb_split
     # the last data slice may contain more data.(no data truncation)
     last_size = data_shape[0] - size * (self._nb_split - 1)
     result = {}
     for i in range(self._nb_split - 1):
         result['slice_{}'.format(i)] = tf.slice(data, [size * i, 0],
                                                 [size, data_shape[1]])
     # arrange the last slice individully.
     result['slice_{}'.format(self._nb_split - 1)] = tf.slice(
         data, [size * self._nb_split - 1, 0], [last_size, data_shape[1]])
     ginfo = inputs[self.KEYS.TENSOR.INPUT].graph_info
     result = {
         k: Tensor(result[k], None,
                   ginfo.update(name=ginfo.name + '_{}'.format(k)))
         for k in result
     }
     return result
Esempio n. 14
0
def main(job, task):
    tf.logging.set_verbosity(0)
    cfg = {"worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'worker', 0)
    # # if task == 1:
    #     # time.sleep(10)
    # with tf.device(Master.master_host().device_prefix()):
    #     with tf.variable_scope('test'):
    #         t1 = tf.get_variable('var', [], tf.float32)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host2 = Host(job, 1)
    hmi = DistributeGraphInfo(None, None, None, master_host)
    with tf.variable_scope('scope_test'):
        t0 = TensorVariable(VariableInfo(None, [1], tf.float32),
                            DistributeGraphInfo.from_(hmi, name='t1'))
        aop = tf.assign(t0.data, tf.constant([3.]))
        t1 = TensorNumpyNDArray([1.0], None,
                                DistributeGraphInfo.from_(hmi, name='t1_copy'))
        t1c = t1.copy_to(host2)
        t1p = Tensor(t1c.data + 1, t1c.data_info, DistributeGraphInfo.from_(t1c.graph_info, name='t1_plus'))
        # t2 = t0.copy_to(host2)
    make_distribute_session()
    if task == 0:
        # ThisSession.run(tf.global_variables_initializer())
        ptensor(t1)
        Server.join()
    if task == 1:
        ptensor(t1)
        ptensor(t1c)
        ptensor(t1p)
        # print(t2.run())
        # print(t2.data)
        # print(t0.run())
        # print(t0)
        ptensor(t0)
        print(ThisSession.run(aop))
        ptensor(t0)
Esempio n. 15
0
def apply_model(model, dataset, spec):
    infer = model({'hits': Tensor(dataset['hits'])})
    label = dataset['crystal_index']
    loss = tf.losses.sigmoid_cross_entropy(label, infer.data)
    acc = same_crystal_accuracy(label, infer.data, spec)
    return {"infer": infer, "loss": loss, "accuracy": acc, 'label': label}
Esempio n. 16
0
def _(x, nb_units):
    return Tensor(_dense(x.data, nb_units))
Esempio n. 17
0
 def __call__(self, x):
     gtx = get_global_context()
     keep_prob = gtx.tensors[gtx.KEYS.TENSOR.KEEP_PROB]
     return Tensor(tf.nn.dropout(x.data, keep_prob.data))
Esempio n. 18
0
def _(x, nb_classes):
    return Tensor(_one_hot(x.data, nb_classes))
Esempio n. 19
0
def _(x):
    return Tensor(_ReLU(x.data))