def test_corr(): data = np.load("../examples/data/eeg_32chans_10secs.npy") r = corr(data, [1.0, 4.0], 128.0) expected = np.load("data/test_corr.npy") np.testing.assert_array_equal(r, expected)
def _get_fc_graph(x, band_freq, sampling_freq, fc_measure='corr', link_cutoff=0., band_freq_hi=(20., 45.), nfft=128, n_overlap=64): """ Build a functional connectivity network from the given data stream. :param x: numpy array of shape (n_channels, n_samples); :param band_freq: list with two elements, the band in which to estimate FC; :param sampling_freq: float, sampling frequency of the stream; :param fc_measure: functional connectivity measure to use; :param link_cutoff: links with absolute FC measure below this value will be removed; :param band_freq_hi: high band used to estimate FC when using 'aec'; :param nfft: TODO, affects 'wpli' and 'dwpli'; :param n_overlap: TODO, affects 'wpli' and 'dwpli'; :return: FC graph in numpy format (note that node features are all ones). """ if fc_measure == 'iplv': _, ef = fc.iplv(x, band_freq, sampling_freq) elif fc_measure == 'icoh': ef = fc.icoherence(x, band_freq, sampling_freq) elif fc_measure == 'corr': ef = fc.corr(x, band_freq, sampling_freq) elif fc_measure == 'aec': ef = fc.aec(x, band_freq, band_freq_hi, sampling_freq) elif fc_measure == 'wpli': csdparams = {'NFFT': nfft, 'noverlap': n_overlap} ef = fc.wpli(x, band_freq, sampling_freq, **csdparams) ef = np.abs(ef) elif fc_measure == 'dwpli': csdparams = {'NFFT': nfft, 'noverlap': n_overlap} ef = fc.dwpli(x, band_freq, sampling_freq, **csdparams) ef = np.abs(ef) elif fc_measure == 'dpli': ef = fc.dpli(x, band_freq, sampling_freq) else: raise ValueError('Invalid fc_measure') # Set the main diagonal to zero (no self-loops) np.fill_diagonal(ef, 0.0) # Compute adjacency matrix by rounding to 0 and 1 based on the cutoff adj = ef.copy() if link_cutoff != 0: adj[np.abs(adj) >= link_cutoff] = 1 adj[np.abs(adj) < link_cutoff] = 0 else: adj[...] = 1 # Dummy node features # TODO: proper nf nf = np.ones((ef.shape[0], 1)) # Edge features ef = ef[..., None] return adj, nf, ef
def _get_fc_graph(x, fc_measure, nf_mode, band_freq=None, band_freq_hi=None, sampling_freq=None, nfft=None, n_overlap=None): if fc_measure == 'iplv': _, ef = fc.iplv(x, band_freq, sampling_freq) elif fc_measure == 'icoh': ef = fc.icoherence(x, band_freq, sampling_freq) elif fc_measure == 'corr': ef = fc.corr(x, band_freq, sampling_freq) elif fc_measure == 'aec': ef = fc.aec(x, band_freq, band_freq_hi, sampling_freq) elif fc_measure == 'wpli': csdparams = {'NFFT': nfft, 'noverlap': n_overlap} ef = fc.wpli(x, band_freq, sampling_freq, **csdparams) elif fc_measure == 'dwpli': csdparams = {'NFFT': nfft, 'noverlap': n_overlap} ef = fc.dwpli(x, band_freq, sampling_freq, **csdparams) elif fc_measure == 'dpli': ef = fc.dpli(x, band_freq, sampling_freq) else: raise ValueError('Invalid fc_measure ' + fc_measure) # Dummy node features if nf_mode == 'full': nf = x.copy() elif nf_mode == 'mean': nf = np.mean(x, -1) elif nf_mode == 'energy': nf = np.sum(x**2, -1) elif nf_mode == 'power': nf = np.sum(x**2, -1) / x.shape[-1] elif nf_mode == 'ones': nf = np.ones((ef.shape[0], 1)) else: raise ValueError('Invalid nf_mode' + nf_mode) return nf, ef
def _get_fc_graph(x, band_freq, sampling_freq, fc_measure='corr', link_cutoff=0., band_freq_hi=(20., 45.), nfft=128, n_overlap=64, nf_mode='mean', self_loops=True): """ Build a functional connectivity network from the given data stream. :param x: numpy array of shape (n_channels, n_samples); :param band_freq: list with two elements, the band in which to estimate FC; :param sampling_freq: float, sampling frequency of the stream; :param fc_measure: functional connectivity measure to use. Possible measures are: iplv, icoh, corr, aec, wpli, dwpli, dpli (see documentation of Dyfunconn); :param link_cutoff: links with absolute FC measure below this value will be removed; :param band_freq_hi: high band used to estimate FC when using 'aec'; :param nfft: TODO, affects 'wpli' and 'dwpli'; :param n_overlap: TODO, affects 'wpli' and 'dwpli'; :param nf_mode: how to compute node features. Possible modes are: full, mean, energy, ones. :param self_loops: add self loops to FC network; :return: FC graph in numpy format (note that node features are all ones). """ if fc_measure == 'iplv': _, ef = fc.iplv(x, band_freq, sampling_freq) elif fc_measure == 'icoh': ef = fc.icoherence(x, band_freq, sampling_freq) elif fc_measure == 'corr': ef = fc.corr(x, band_freq, sampling_freq) elif fc_measure == 'aec': ef = fc.aec(x, band_freq, band_freq_hi, sampling_freq) elif fc_measure == 'wpli': csdparams = {'NFFT': nfft, 'noverlap': n_overlap} ef = fc.wpli(x, band_freq, sampling_freq, **csdparams) ef = np.abs(ef) elif fc_measure == 'dwpli': csdparams = {'NFFT': nfft, 'noverlap': n_overlap} ef = fc.dwpli(x, band_freq, sampling_freq, **csdparams) ef = np.abs(ef) elif fc_measure == 'dpli': ef = fc.dpli(x, band_freq, sampling_freq) else: raise ValueError('Invalid fc_measure {}'.format(fc_measure)) # Compute adjacency matrix by rounding to 0 and 1 based on the cutoff adj = ef.copy() if link_cutoff != 0: adj[np.abs(adj) >= link_cutoff] = 1 adj[np.abs(adj) < link_cutoff] = 0 else: adj[...] = 1 if self_loops: # Set the main diagonal to zero np.fill_diagonal(adj, 1.0) else: np.fill_diagonal(ef, 0.0) np.fill_diagonal(adj, 1.0) # Dummy node features if nf_mode == 'full': nf = x.copy() elif nf_mode == 'mean': nf = np.mean(x, -1) elif nf_mode == 'energy': nf = np.sum(x**2, -1) elif nf_mode == 'ones': nf = np.ones((ef.shape[0], 1)) else: raise ValueError('Invalid nf_mode {}'.format(nf_mode)) # Edge features ef = ef[..., None] return adj, nf, ef
# -*- coding: utf-8 -*- # Author: Avraam Marimpis <*****@*****.**> import numpy as np np.set_printoptions(precision=2, linewidth=256) from dyfunconn import analytic_signal from dyfunconn.fc import corr, crosscorr, partcorr from dyfunconn.fc import Corr if __name__ == "__main__": data = np.load("data/eeg_32chans_10secs.npy") n_channels, n_samples = np.shape(data) fb = [1.0, 4.0] fs = 128.0 # Correlation r = corr(data, fb, fs) print(r) # Partial correlation # pr = partcorr(data, fb, fs) # print(pr) ro = Corr(fb, fs) pp_data = ro.preprocess(data) r = ro.estimate(pp_data) print(r)