def boot_to_posterior(values, weights): q = [0.5 - 0.5 * 0.999999426697, 0.5 + 0.5 * 0.999999426697] span = _quantile(values, q, weights=weights) s = 0.02 bins = int(round(10. / 0.02)) n, b = np.histogram(values, bins=bins, weights=weights,range=np.sort(span)) n = norm_kde(n, 20.) x0 = 0.5 * (b[1:] + b[:-1]) y0 = n return x0, y0 / np.trapz(y0,x0)
def Get_posterior(sample, logwt, logz): weight = np.exp(logwt - logz[-1]) q = [0.5 - 0.5 * 0.999999426697, 0.5 + 0.5 * 0.999999426697] span = _quantile(sample.T, q, weights=weight) s = 0.02 bins = int(round(10. / 0.02)) n, b = np.histogram(sample, bins=bins, weights=weight, range=np.sort(span)) n = norm_kde(n, 10.) x0 = 0.5 * (b[1:] + b[:-1]) y0 = n return x0, y0 / np.trapz(y0, x0)