Esempio n. 1
0
def sdk_model_package(name_suffix):
    model_package_group_name = name_suffix + "-group"

    (
        model_package_group_input,
        model_package_group_response,
    ) = sdk_make_model_package_group(model_package_group_name)
    model_package_input, model_package_response = sdk_make_model_package(
        model_package_group_name)

    yield (
        model_package_group_input,
        model_package_group_response,
        model_package_input,
        model_package_response,
    )
    model_package_arn = model_package_response.get("ModelPackageArn")
    if get_sagemaker_model_package(model_package_arn) is not None:
        wait_sagemaker_model_package_status(model_package_arn,
                                            cfg.JOB_STATUS_COMPLETED)
        sagemaker_client().delete_model_package(
            ModelPackageName=model_package_arn)
    if get_sagemaker_model_package_group(model_package_group_name) is not None:
        sagemaker_client().delete_model_package_group(
            ModelPackageGroupName=model_package_group_name)
Esempio n. 2
0
def sdk_make_model_package(model_package_group_name):
    data_bucket = REPLACEMENT_VALUES["SAGEMAKER_DATA_BUCKET"]
    model_package_input = {
        "ModelPackageGroupName": model_package_group_name,
        "InferenceSpecification": {
            "Containers": [{
                "Image":
                REPLACEMENT_VALUES["XGBOOST_IMAGE_URI"],
                "ModelDataUrl":
                f"s3://{data_bucket}/sagemaker/model/xgboost-mnist-model.tar.gz",
            }],
            "SupportedContentTypes": [
                "text/csv",
            ],
            "SupportedResponseMIMETypes": [
                "text/csv",
            ],
        },
    }

    model_package_response = sagemaker_client().create_model_package(
        **model_package_input)
    assert model_package_response.get("ModelPackageArn", None) is not None

    return model_package_input, model_package_response
    def test_versioned_model_package_completed(
            self, xgboost_versioned_model_package):
        (reference, spec, resource) = xgboost_versioned_model_package
        assert k8s.get_resource_exists(reference)

        model_package_group_name = resource["spec"].get(
            "modelPackageGroupName")
        # Model package name for Versioned Model packages is the ARN of the resource
        model_package_name = sagemaker_client().list_model_packages(
            ModelPackageGroupName=model_package_group_name
        )["ModelPackageSummaryList"][0]["ModelPackageArn"]

        model_package_desc = get_sagemaker_model_package(model_package_name)
        if k8s.get_resource_arn(resource) is None:
            logging.error(
                f"ARN for this resource is None, resource status is: {resource['status']}"
            )

        assert k8s.get_resource_arn(resource) == model_package_name

        self._assert_model_package_status_in_sync(model_package_name,
                                                  reference,
                                                  cfg.JOB_STATUS_INPROGRESS)
        assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False")

        self._assert_model_package_status_in_sync(model_package_name,
                                                  reference,
                                                  cfg.JOB_STATUS_COMPLETED)
        assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "True")

        # Update the resource
        new_model_approval_status = "Approved"
        approval_description = "Approved modelpackage"
        spec["spec"]["modelApprovalStatus"] = new_model_approval_status
        spec["spec"]["approvalDescription"] = approval_description
        resource = k8s.patch_custom_resource(reference, spec)
        resource = k8s.wait_resource_consumed_by_controller(reference)
        assert resource is not None

        self._assert_model_package_status_in_sync(model_package_name,
                                                  reference,
                                                  cfg.JOB_STATUS_COMPLETED)
        assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "True")

        model_package_desc = get_sagemaker_model_package(model_package_name)
        assert model_package_desc[
            "ModelApprovalStatus"] == new_model_approval_status
        assert model_package_desc[
            "ApprovalDescription"] == approval_description

        assert (resource["spec"].get("modelApprovalStatus",
                                     None) == new_model_approval_status)
        assert resource["spec"].get("approvalDescription",
                                    None) == approval_description
        # Check that you can delete a completed resource from k8s
        _, deleted = k8s.delete_custom_resource(reference, DELETE_WAIT_PERIOD,
                                                DELETE_WAIT_LENGTH)
        assert deleted is True
        assert get_sagemaker_model_package(model_package_name) is None
def sdk_make_endpoint(endpoint_name, endpoint_config_name):
    endpoint_input = {
        "EndpointName": endpoint_name,
        "EndpointConfigName": endpoint_config_name,
    }
    endpoint_response = sagemaker_client().create_endpoint(**endpoint_input)
    assert endpoint_response.get("EndpointArn", None) is not None

    return endpoint_input, endpoint_response
def get_sagemaker_hpo_job(hpo_job_name: str):
    try:
        hpo_desc = sagemaker_client().describe_hyper_parameter_tuning_job(
            HyperParameterTuningJobName=hpo_job_name)
        return hpo_desc
    except botocore.exceptions.ClientError as error:
        logging.error(
            f"SageMaker could not find an hpo job with the name {hpo_job_name}. Error {error}"
        )
        return None
def get_sagemaker_processing_job(processing_job_name: str):
    try:
        processing_job = sagemaker_client().describe_processing_job(
            ProcessingJobName=processing_job_name)
        return processing_job
    except botocore.exceptions.ClientError as error:
        logging.error(
            f"SageMaker could not find a processing job with the name {processing_job_name}. Error {error}"
        )
        return None
def get_notebook_instance_lifecycle_config(notebook_instance_lfc_name: str):
    try:
        resp = sagemaker_client().describe_notebook_instance_lifecycle_config(
            NotebookInstanceLifecycleConfigName=notebook_instance_lfc_name)
        return resp
    except botocore.exceptions.ClientError as error:
        logging.error(
            f"SageMaker could not find a Notebook Instance Lifecycle Configuration with the name {notebook_instance_lfc_name}. Error {error}"
        )
        return None
def get_sagemaker_feature_group(feature_group_name: str):
    """Used to check if there is an existing feature group with a given feature_group_name."""
    try:
        return sagemaker_client().describe_feature_group(
            FeatureGroupName=feature_group_name)
    except botocore.exceptions.ClientError as error:
        logging.error(
            f"SageMaker could not find a feature group with the name {feature_group_name}. Error {error}"
        )
        return None
Esempio n. 9
0
def sdk_make_model_package_group(model_package_group_name):
    model_package_group_input = {
        "ModelPackageGroupName": model_package_group_name,
        "ModelPackageGroupDescription": "ModelPackageGroup for adoption",
    }

    model_package_group_response = sagemaker_client(
    ).create_model_package_group(**model_package_group_input)
    assert model_package_group_response.get("ModelPackageGroupArn",
                                            None) is not None
    return model_package_group_input, model_package_group_response
Esempio n. 10
0
def get_sagemaker_transform_job(transform_job_name: str):
    try:
        transform_desc = sagemaker_client().describe_transform_job(
            TransformJobName=transform_job_name
        )
        return transform_desc
    except botocore.exceptions.ClientError as error:
        logging.error(
            f"SageMaker could not find a transform job with the name {transform_job_name}. Error {error}"
        )
        return None
def sdk_endpoint(name_suffix):
    model_name = name_suffix + "-model"
    endpoint_config_name = name_suffix + "-config"
    endpoint_name = name_suffix

    model_input, model_response = sdk_make_model(model_name)
    endpoint_config_input, endpoint_config_response = sdk_make_endpoint_config(
        model_name, endpoint_config_name
    )
    endpoint_input, endpoint_response = sdk_make_endpoint(
        endpoint_name, endpoint_config_name
    )

    yield (
        model_input,
        model_response,
        endpoint_config_input,
        endpoint_config_response,
        endpoint_input,
        endpoint_response,
    )

    if get_sagemaker_endpoint(endpoint_name) is not None:
        wait_sagemaker_endpoint_status(endpoint_name, cfg.ENDPOINT_STATUS_INSERVICE)
        sagemaker_client().delete_endpoint(EndpointName=endpoint_name)
    if get_sagemaker_endpoint_config(endpoint_config_name) is not None:
        sagemaker_client().delete_endpoint_config(
            EndpointConfigName=endpoint_config_name
        )
    if get_sagemaker_model(model_name) is not None:
        sagemaker_client().delete_model(ModelName=model_name)
    def test_create_cross_region_model(self, cross_region_model):
        (reference, resource) = cross_region_model
        assert k8s.get_resource_exists(reference)

        sm_client = sagemaker_client(get_cross_region())
        model_name = resource["spec"].get("modelName", None)
        model_desc = get_sagemaker_model(model_name, sm_client)
        cross_region_model_arn = model_desc["ModelArn"]
        assert k8s.get_resource_arn(resource) == cross_region_model_arn

        # Delete the k8s resource.
        _, deleted = k8s.delete_custom_resource(reference, 3, 10)
        assert deleted

        assert get_sagemaker_model(model_name, sm_client) is None
def sdk_make_model(model_name):
    data_bucket = REPLACEMENT_VALUES["SAGEMAKER_DATA_BUCKET"]
    model_input = {
        "ModelName": model_name,
        "Containers": [
            {
                "Image": REPLACEMENT_VALUES["XGBOOST_IMAGE_URI"],
                "ModelDataUrl": f"s3://{data_bucket}/sagemaker/model/xgboost-mnist-model.tar.gz",
            }
        ],
        "ExecutionRoleArn": REPLACEMENT_VALUES["SAGEMAKER_EXECUTION_ROLE_ARN"],
    }

    model_response = sagemaker_client().create_model(**model_input)
    assert model_response.get("ModelArn", None) is not None
    return model_input, model_response
def sdk_make_endpoint_config(model_name, endpoint_config_name):
    endpoint_config_input = {
        "EndpointConfigName": endpoint_config_name,
        "ProductionVariants": [
            {
                "VariantName": "variant-1",
                "ModelName": model_name,
                "InitialInstanceCount": 1,
                "InstanceType": REPLACEMENT_VALUES["ENDPOINT_INSTANCE_TYPE"],
            }
        ],
    }

    endpoint_config_response = sagemaker_client().create_endpoint_config(
        **endpoint_config_input
    )
    assert endpoint_config_response.get("EndpointConfigArn", None) is not None
    return endpoint_config_input, endpoint_config_response