Esempio n. 1
0
    def on_market_prepare_open(self, protfolio: Portfolio, today: datetime):
        """
            市场准备开始(比如:竞价).
        """
        indicator = Indicator(40)
        for code in self.codes:
            bars = self.market.getHistory().getKbars(code, 100)
            indicator.update_bar(bars)
            count = 20
            aroon_down, aroon_up = indicator.aroon(count)
            need_hold = aroon_up > 50 and aroon_up > aroon_down
            position = protfolio.getLongPosition(code)

            if need_hold:
                if position.pos_total < 1:
                    targetPrice = bars[-1].close_price * 1.05  # 上一个交易日的收盘价作为买如价
                    ok = protfolio.buyAtPercentage(code, targetPrice, 1)
                    print(f"buy: price = {targetPrice} , {ok}")

            else:
                if position.pos_total > 0:
                    targetPrice = bars[-1].close_price * 0.92  # 上一个交易日的收盘价作为买如价
                    ok = protfolio.sellAll(code, targetPrice)
                    print(f"sell: price = {targetPrice} , {ok}")

        pass
Esempio n. 2
0
def computeAll():
    from earnmi.data.SWImpl import SWImpl
    from earnmi.chart.Chart import Chart, IndicatorItem, Signal
    sw = SWImpl()
    lists = sw.getSW2List()

    start = datetime(2018, 5, 1)
    end = datetime(2020, 8, 17)

    dataSet = {}

    class DataItem(object):
        pass

    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator()
        for bar in barList:
            ##先识别形态
            rets = KPattern.matchIndicator(indicator)
            size = len(rets)
            if size > 0:
                """有形态识别出来
                """
                for item in rets:
                    name = item.name
                    value = item.value

                    dataItem = None
                    if dataSet.__contains__(name):
                        dataItem = dataSet[name]
                    else:
                        dataItem = DataItem()
                        dataItem.values = []  ##形态被识别的值。
                        dataItem.pcts = []  ##识别之后第二天的盈利情况
                        dataSet[name] = dataItem
                    ##第二天的收益
                    pct = (bar.close_price - bar.open_price) / bar.open_price
                    ##收录当前形态
                    dataItem.values.append(value)
                    dataItem.pcts.append(pct)
                pass
            indicator.update_bar(bar)

    ##打印当前形态
    print(f"总共识别出{len(dataSet)}个形态")
    for key, dataItem in dataSet.items():
        values = np.array(dataItem.values)
        pcts = np.array(dataItem.pcts) * 100
        print(
            f"{key}: len={len(dataItem.values)},values:{values.mean()},pcts:%.2f%%,pcts_std=%.2f"
            % (pcts.mean(), pcts.std()))
Esempio n. 3
0
    def on_bar_per_minute(self, time: datetime, protfolio: Portfolio):
        """
            市场开市后的每分钟。
        """
        #每天两点半的后尝试去做交易。
        if time.hour == 14 and time.minute == 30:
            self.__history_bar100 = self.market.getHistory().getKbars(
                self.code, 100)
            assert len(self.__history_bar100) == 100
            bars = self.__history_bar100

            todayBar = self.market.getRealTime().getKBar(self.code)

            indicator = Indicator(40)
            indicator.update_bar(bars)
            dif, dea, macd_bar = indicator.macd(fast_period=12,
                                                slow_period=26,
                                                signal_period=9,
                                                array=True)

            if (not self.today_has_buy):
                # 预测金叉
                todayBar.close_price = todayBar.close_price * 1.01
                indicator.update_bar(todayBar)
                dif, dea, predict_macd_bar = indicator.macd(fast_period=12,
                                                            slow_period=26,
                                                            signal_period=9,
                                                            array=True)
                print(
                    f"[{self.market.getToday()}]:bar={macd_bar[-1]},predic_bar={predict_macd_bar[-1]}"
                )

                if (predict_macd_bar[-1] > 0 and macd_bar[-1] <= 0):
                    targetPrice = todayBar.close_price  # 上一个交易日的收盘价作为买如价
                    print(f"   gold cross!!!")
                    if protfolio.buy(self.code, targetPrice, 100):
                        self.today_has_buy = True
            elif (not self.today_has_sell):
                todayBar.close_price = todayBar.close_price * 0.99
                indicator.update_bar(todayBar)
                dif, dea, predict_macd_bar = indicator.macd(fast_period=12,
                                                            slow_period=26,
                                                            signal_period=9,
                                                            array=True)
                print(
                    f"[{self.market.getToday()}]:bar={macd_bar[-1]},predic_bar={predict_macd_bar[-1]}"
                )
                if (predict_macd_bar[-1] <= 0 and macd_bar[-1] > 0):
                    targetPrice = todayBar.close_price
                    print(f"   dead cross!!!")
                    if protfolio.sell(self.code, targetPrice, 100):
                        self.today_has_sell = True
Esempio n. 4
0
def collectKPattherAndShowChart():
    from earnmi.data.SWImpl import SWImpl
    from vnpy.trader.constant import Exchange
    from vnpy.trader.constant import Interval
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    bars = []
    limitSize = 0
    chart = Chart()

    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None

        yestodayIsMatch = False

        for i in range(0, len(barList)):
            bar = barList[i]
            indicator.update_bar(bar)
            patternValue = KPattern.encode1KAgo1(indicator)
            todayIsMatch = 9 == patternValue

            if todayIsMatch:
                if indicator.count > 20:
                    chart.show(
                        indicator.makeBars(),
                        savefig=f"imgs/collectKPattherAndShowChart_{limitSize}"
                    )
                    limitSize += 1
                    if (limitSize > 50):
                        break
                pass

            if yestodayIsMatch:

                pass
            preBar = bar
            yestodayIsMatch = todayIsMatch

        if (limitSize > 50):
            break

    pass
Esempio n. 5
0
    def on_market_prepare_open(self, protfolio: Portfolio, today: datetime):
        """
            市场准备开始(比如:竞价).
        """
        indicator = Indicator(40)
        for code in self.codes:
            bars = self.market.getHistory().getKbars(code, 100)
            indicator.update_bar(bars)
            dif, dea, macd_bar = indicator.kdj()

            ##金叉出现
            if (macd_bar[-1] >= 0 and macd_bar[-2] <= 0):
                tradePrice = bars[-1].close_price * 1.01  # 上一个交易日的收盘价作为买如价
                protfolio.buy(code, tradePrice, 1)
                protfolio.cover(code, tradePrice, 1)  ##平仓做空
                ##死叉出现
            if (macd_bar[-1] <= 0 and macd_bar[-2] >= 0):
                targetPrice = bars[-1].close_price * 0.99  # 上一个交易日的收盘价作为买如价
                protfolio.sell(code, targetPrice, 1)
                protfolio.short(code, targetPrice, 1)  ##开仓做空

        pass
Esempio n. 6
0
def computeAndPrint(bars: []) -> AnalysisData:
    data = AnalysisData()

    total_count = len(bars)
    previous_macd = -1
    previouc_kdj = -1
    indicator = Indicator(50)
    for i in range(0, total_count):
        bar: BarData = bars[i]
        indicator.update_bar(bar)

        k_large_than_d = False
        if indicator.count >= 13:
            k, d, j = indicator.kdj(fast_period=9, slow_period=3, array=True)

            k_large_than_d = k[-1] >= d[-1]
            ##金叉出现
            if (k[-1] >= d[-1] and k[-2] <= d[-2]):
                previouc_kdj = i

        if indicator.count >= 30:
            dif, dea, macd_bar = indicator.macd(fast_period=12,
                                                slow_period=26,
                                                signal_period=9,
                                                array=True)
            ##金叉出现
            if (macd_bar[-1] >= 0 and macd_bar[-2] <= 0):
                previous_macd = i
                if previouc_kdj > 0:
                    data.count = data.count + 1
                    if k_large_than_d:
                        data.k_large_than_d_count = data.k_large_than_d_count + 1

                    dis = previous_macd - previouc_kdj
                    if (dis >= 0 and dis < KDJ_DIS_SIZE):
                        data.kdj_dis[dis] = data.kdj_dis[dis] + 1
    return data
Esempio n. 7
0
def findKPatternThatIn3Day(first_day_pct: float = 3, targe_pct=3):
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    dataSet = {}
    total_count = 0
    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        traceItems: ['TraceIn3DayItem'] = []
        for bar in barList:
            ###跟踪数据
            toDeleteList = []
            for traceItem in traceItems:
                traceItem.onTraceBar(bar)
                if traceItem.isFinished():
                    toDeleteList.append(traceItem)
                    if traceItem.isWanted():
                        ###归纳到统计里面
                        dataItem: CountItem = dataSet.get(traceItem.kPattern)
                        if dataItem is None:
                            dataItem = CountItem()
                            dataSet[traceItem.kPattern] = dataItem
                        pct = traceItem.current_sell_pct
                        total_count += 1
                        dataItem.count_total += 1
                        dataItem.pct_total += pct
                        if traceItem.isSuccess():
                            dataItem.count_earn += 1
                            dataItem.pct_earn += pct
                        pass
            for traceItem in toDeleteList:
                traceItems.remove(traceItem)

            indicator.update_bar(bar)
            kEncodeValue = KPattern.encode2KAgo1(indicator)
            if kEncodeValue is None:
                continue
            traceItem = TraceIn3DayItem(kEncodeValue, bar)
            traceItems.append(traceItem)

        ##打印当前形态
    occur_count = 0
    print(f"总共分析{total_count}个形态,识别出{len(dataSet)}个形态,有意义的形态有:")
    max_succ_rate = 0
    min_succ_rate = 100
    ret_list = []
    for key, dataItem in dataSet.items():
        success_rate = 100 * dataItem.count_earn / dataItem.count_total
        if dataItem.count_total < 300:
            continue
        if success_rate < 40:
            continue
        ret_list.append(key)
        if dataItem.count_earn > 0:
            earn_pct = dataItem.pct_earn / dataItem.count_earn
        else:
            earn_pct = 0

        avg_pct = dataItem.pct_total / dataItem.count_total
        occur_count += dataItem.count_total
        occur_rate = 100 * dataItem.count_total / total_count
        max_succ_rate = max(success_rate, max_succ_rate)
        min_succ_rate = min(success_rate, min_succ_rate)
        print(
            f"{key}: total={dataItem.count_total},suc=%.2f%%,occur_rate=%.2f%%,earn_pct:%.2f%%,avg_pct:%.2f%%)"
            % (success_rate, occur_rate, earn_pct, avg_pct))

    total_occur_rate = 100 * occur_count / total_count
    print(f"总共:occur_rate=%.2f%%, min_succ_rate=%.2f%%, max_succ_rate=%.2f%%" %
          (total_occur_rate, min_succ_rate, max_succ_rate))
    print(f"{ret_list}")
Esempio n. 8
0
"""
不同的股票价格的macd的数值不同,macd是跟价格相关的。这样不同股票的价格的macd数值就不好做个比较。
所以要标准化,不同价格的macd的值要标准进行可比较。
标准化的步骤就是: macd值处于最后一天的收盘价。
这里统计下中证500的macd标准化之后的数据统计情况
"""
if __name__ == "__main__":
    start = datetime(2015, 10, 1)
    end = datetime(2020, 9, 30)
    souces = ZZ500DataSource(start, end)
    bars,code = souces.nextBars()
    dif_list = []
    dea_list = []
    while not bars is None:
        indicator = Indicator(40)
        for bar in bars:
            indicator.update_bar(bar)
            if indicator.count > 33:
                dif, dea, macd_bar = indicator.macd(fast_period=12, slow_period=26, signal_period=9, array=False)
                dif_value = dif/bar.close_price * 100
                dea_value = dea / bar.close_price * 100
                dif_list.append(dif_value)
                dea_list.append(dea_value)
                if abs(dif_value) > 20:
                    print(f"dif:{dif_value},code={code},bar = {bar}")
                if abs(dea_value) > 20:
                    print(f"dea:{dea_value},code={code},bar = {bar}")

        bars, code = souces.nextBars()
    dif_list = np.array(dif_list)
Esempio n. 9
0
def generateSWTrainData(kPatterns: [], start: datetime,
                        end: datetime) -> pd.DataFrame:
    sw = SWImpl()
    lists = sw.getSW2List()
    cloumns = [
        "code", "name", "kPattern", "k", "d", "dif", "dea", "macd", "open",
        "short", "long"
    ]
    datas = []
    kPatternMap = {}
    for kPatternValues in kPatterns:
        kPatternMap[kPatternValues] = True

    macd_list = []

    for code in lists:
        # for code in lists:
        name = sw.getSw2Name(code)
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(34)
        preBar = None
        for bar in barList:
            ##先识别形态
            kEncodeValue = None
            if indicator.inited:
                tmpKEncodeValue = KPattern.encode3KAgo1(indicator)
                if kPatternMap.__contains__(tmpKEncodeValue):
                    kEncodeValue = tmpKEncodeValue
            if kEncodeValue is None:
                indicator.update_bar(bar)
                preBar = bar
                continue
            ##昨天的kdj
            k, d, j = indicator.kdj(array=False)
            dif, dea, macd = indicator.macd(fast_period=12,
                                            slow_period=26,
                                            signal_period=9,
                                            array=False)

            ##第二天的收益
            short_pct = 100 * ((bar.high_price + bar.close_price) / 2 -
                               preBar.close_price) / preBar.close_price
            long_pct = 100 * ((bar.low_price + bar.close_price) / 2 -
                              preBar.close_price) / preBar.close_price
            open_pct = 100 * (bar.open_price -
                              preBar.close_price) / preBar.close_price

            item = []
            item.append(code)
            item.append(name)
            item.append(kEncodeValue)
            item.append(k)
            item.append(d)
            item.append(dif)
            item.append(dea)
            item.append(macd)
            #下个k线数据
            item.append(open_pct)
            item.append(short_pct)
            item.append(long_pct)
            datas.append(item)

            macd_list.append(macd)

            indicator.update_bar(bar)
            preBar = bar
    macd_list = np.array(macd_list)
    print(
        f"total size : {len(datas)},mean ={macd_list.mean()},max={macd_list.max()},min={macd_list.min()}"
    )
    wxl = pd.DataFrame(datas, columns=cloumns)
    return wxl
Esempio n. 10
0
               exchange=Exchange.SSE,
               datetime=None,
               gateway_name="unkonw",
               open_price=883,
               high_price=0,
               low_price=0)

bar4 = BarData(symbol="test",
               exchange=Exchange.SSE,
               datetime=None,
               gateway_name="unkonw",
               open_price=884,
               high_price=0,
               low_price=0)

indexes = Indicator(100)
assert indexes.inited == False

bars55 = buidildBars(55)
indexes.update_bar(bars55)
assert indexes.count == 55
assert indexes.inited == False
assert indexes.open_array[-1] == 54
assert indexes.open_array[-55] == 0

bars42 = buidildBars(42)
indexes.update_bar(bars42)
assert indexes.count == 97
assert indexes.inited == False
assert indexes.open_array[-1] == 41
assert indexes.open_array[-42] == 0
Esempio n. 11
0
def compute_SW_KEncode_parseAlgro1_split(
        pct_split=[-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7],
        extra_split=[1, 2, 3]):
    from earnmi.data.SWImpl import SWImpl
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    dataSet = {}

    pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
    extra_split = [0.5, 1.0, 1.5, 2.0, 2.5, 2.0]

    total_count = 0
    pct_code_count = np.zeros(len(pct_split) + 1)
    high_extra_pct_code_count = np.zeros(len(extra_split) + 1)
    low_extra_pct_code_count = np.zeros(len(extra_split) + 1)

    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None
        for i in range(0, len(barList)):
            bar = barList[i]
            indicator.update_bar(bar)

            if (i > 10):
                k_code, pct_code, high_extra_pct_code, low_extra_pct_code = KEncode.parseAlgro1(
                    indicator.close[-2], indicator.open[-1],
                    indicator.high[-1], indicator.low[-1], indicator.close[-1],
                    pct_split, extra_split)
                high_extra_pct_code_count[
                    high_extra_pct_code] = high_extra_pct_code_count[
                        high_extra_pct_code] + 1
                low_extra_pct_code_count[
                    low_extra_pct_code] = low_extra_pct_code_count[
                        low_extra_pct_code] + 1
                pct_code_count[pct_code] = pct_code_count[pct_code] + 1
                total_count += 1
            preBar = bar

        ##打印当前形态
    print(f"pct_split: {pct_split}")
    print(f"extra_split: {extra_split}")

    count_list = pct_code_count
    print(f"应该服从正太分布")
    print(f"\n:pct_code_count分布,avg = %.4f%%" % (100 / len(count_list)))
    for codeId in range(0, len(count_list)):
        item_count = count_list[codeId]
        item_occur_rate = 100 * item_count / total_count
        print(f"\t{codeId}: %.4f  %%   count:%d" %
              (item_occur_rate, item_count))

    count_list = high_extra_pct_code_count
    print(f"\n:high_extra_pct_code_count分布,avg = %.4f%%" %
          (100 / len(count_list)))
    for codeId in range(0, len(count_list)):
        item_count = count_list[codeId]
        item_occur_rate = 100 * item_count / total_count
        print(f"\t{codeId}: %.4f  %%   count:%d" %
              (item_occur_rate, item_count))

    count_list = low_extra_pct_code_count
    print(f"\n:low_extra_pct_code_count分布,avg = %.4f%%" %
          (100 / len(count_list)))
    for codeId in range(0, len(count_list)):
        item_count = count_list[codeId]
        item_occur_rate = 100 * item_count / total_count
        print(f"\t{codeId}: %.4f  %%   count:%d" %
              (item_occur_rate, item_count))
Esempio n. 12
0
def compute_SW_KPattern_data():
    from earnmi.data.SWImpl import SWImpl
    from earnmi.chart.Chart import Chart, IndicatorItem, Signal
    sw = SWImpl()
    lists = sw.getSW2List()

    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    dataSet = {}

    total_count = 0
    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator()
        preBar = None
        for bar in barList:
            ##先识别形态
            rets = KPattern.matchIndicator(indicator)
            size = len(rets)
            if size > 0 and not preBar is None:
                """有形态识别出来
                """
                for item in rets:
                    name = item.name
                    value = item.value
                    total_count += 1
                    dataItem = None
                    if dataSet.__contains__(name):
                        dataItem = dataSet[name]
                    else:
                        dataItem = CountItem()
                        dataItem.values = []  ##形态被识别的值。
                        dataItem.pcts = []  ##识别之后第二天的盈利情况
                        dataSet[name] = dataItem
                    ##第二天的收益
                    short_pct = ((bar.high_price + bar.close_price) / 2 -
                                 preBar.close_price) / preBar.close_price
                    #long_pct = ((bar.high_price + bar.close_price) / 2 - preBar.close_price) / preBar.close_price

                    ###pct = (bar.close_price - preBar.close_price) / preBar.close_price

                    ##收录当前形态
                    dataItem.count_total += 1
                    dataItem.pct_total += short_pct
                    if short_pct > 0.000001:
                        dataItem.count_earn += 1
                        dataItem.pct_earn += short_pct
                    dataItem.values.append(value)
                    dataItem.pcts.append(short_pct)

                pass
            indicator.update_bar(bar)
            preBar = bar

    ##打印当前形态
    print(f"总共分析{total_count}个形态,识别出{len(dataSet)}个形态,有意义的形态有:")
    for key, dataItem in dataSet.items():
        if dataItem.count_total < 1000:
            continue
        success_rate = 100 * dataItem.count_earn / dataItem.count_total
        if abs(int(success_rate - 50)) < 5:
            continue
        values = np.array(dataItem.values)
        pcts = np.array(dataItem.pcts) * 100

        count = len(values)
        long_values = []
        short_value = []
        long_pcts = []
        long_ok_cnt = 0
        short_pcts = []
        short_ok_cnt = 0
        for i in range(0, count):
            v = values[i]
            if v > 0:
                long_values.append(v)
                long_pcts.append(pcts[i])
                if pcts[i] >= 0.000001:
                    long_ok_cnt = long_ok_cnt + 1
            else:
                short_value.append(v)
                short_pcts.append(pcts[i])
                if pcts[i] <= -10.000001:
                    short_ok_cnt = short_ok_cnt + 1
        long_values = np.array(long_values)
        short_value = np.array(short_value)
        long_pcts = np.array(long_pcts)
        short_pcts = np.array(short_pcts)

        long_pct = 0
        long_std = math.nan
        long_success = math.nan

        short_pct = 0
        short_std = math.nan
        short_success = math.nan
        if len(long_values) > 0:
            long_pct = long_pcts.mean()
            long_std = long_pcts.std()
            long_success = long_ok_cnt / len(long_values)

        if len(short_value) > 0:
            short_pct = short_pcts.mean()
            short_std = short_pcts.std()
            short_success = short_ok_cnt / len(short_value)

        print(
            f"{key}: count={count},suc_reate=%.2f%%,long(size:{len(long_values)},suc=%.2f%%,pcts:%.2f%%,std=%.2f),short(size:{len(short_value)},suc=%.2f%%,pcts:%.2f%%,std=%.2f)"
            % (success_rate, long_success * 100, long_pct, long_std,
               short_success * 100, short_pct, short_std))

    print("-----------具体情况-----------")
    outputKeys = ["CDLADVANCEBLOCK"]
    for key in outputKeys:
        dataItem = dataSet[key]
        values = np.array(dataItem.values)
        pcts = np.array(dataItem.pcts) * 100
        count = len(dataItem.values)
        print(
            f"{key}: count={count},values:{values.mean()},pcts:%.2f%%,pcts_std=%.2f"
            % (pcts.mean(), pcts.std()))

        itemSize = 10
        size = int(count / itemSize)
        if count % itemSize > 0:
            size = size + 1
        for i in range(0, size):
            lineStr = ""
            start = itemSize * i
            end = min(start + itemSize, count)
            for j in range(start, end):
                lineStr = lineStr + (f" %4d->%.2f%%," % (values[j], pcts[j]))
            print(lineStr)
Esempio n. 13
0
def printKPatterMoreDetail(kPatters=[
    6, 3, 17, 81, 7, 5, 4, 82, 159, 16, 28, 83, 15, 84, 18, 27, 93, 104, 158,
    92, 160, 236, 157, 94, 85, 80, 14, 8, 161, 9, 29, 170, 26, 19, 38, 2, 79
]):
    from earnmi.data.SWImpl import SWImpl
    from vnpy.trader.constant import Exchange
    from vnpy.trader.constant import Interval
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
    pct_split = [-7, -5, -3, -1.0, 0, 1, 3, 5, 7]
    pct_split = [-0.5, 0.5]

    pctEncoder = FloatEncoder(pct_split)

    kPattersMap = {}
    for value in kPatters:
        kPattersMap[value] = True

    class InnerData(object):
        kValue: int  ##
        sell_disbute = np.zeros(pctEncoder.mask())  ##卖方力量分布情况
        buy_disbute = np.zeros(pctEncoder.mask())  #买方力量分布情况
        pass

    dataSet = {}
    occurDayMap = {}
    allTrayDay = 1
    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None

        previousIsMatch = False
        previousPatternVaule = None
        allTrayDay = max(allTrayDay, len(barList))
        for i in range(0, len(barList)):
            bar = barList[i]
            indicator.update_bar(bar)
            patternValue = KPattern.encode1KAgo1(indicator)
            todayIsMatch = False
            if not patternValue is None:
                todayIsMatch = kPattersMap.__contains__(patternValue)

            if todayIsMatch:
                dayKey = bar.datetime.year * 13 * 35 + bar.datetime.month * 13 + bar.datetime.day
                occurDayMap[dayKey] = True
                pass

            if previousIsMatch:
                innerData: InnerData = dataSet.get(previousIsMatch)
                if innerData is None:
                    innerData = InnerData()
                    innerData.kValue = previousIsMatch
                    dataSet[previousPatternVaule] = innerData

                sell_pct = 100 * ((bar.high_price + bar.close_price) / 2 -
                                  preBar.close_price) / preBar.close_price
                buy_pct = 100 * ((bar.low_price + bar.close_price) / 2 -
                                 preBar.close_price) / preBar.close_price
                innerData.buy_disbute[pctEncoder.encode(buy_pct)] += 1
                innerData.sell_disbute[pctEncoder.encode(sell_pct)] += 1

                pass
            preBar = bar
            previousIsMatch = todayIsMatch
            previousPatternVaule = patternValue

    print(f"所有交易日中,有意义的k线形态出现占比:%.2f%%" %
          (100 * len(occurDayMap) / allTrayDay))

    for kValue, dataItem in dataSet.items():
        total_count1 = 0
        total_count2 = 0
        for cnt in dataItem.sell_disbute:
            total_count1 += cnt
        for cnt in dataItem.buy_disbute:
            total_count2 += cnt
        assert total_count1 == total_count2
        assert total_count1 > 0

        print(f"\n\nk:%6d, " % (kValue))

        print(f"   卖方价格分布:")
        for encode in range(0, len(dataItem.sell_disbute)):
            occurtRate = 100 * dataItem.sell_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

        print(f"   买方价格分布:")
        for encode in range(0, len(dataItem.buy_disbute)):
            occurtRate = 100 * dataItem.buy_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

    pass
Esempio n. 14
0
def compute_SW_KEncode_data():
    from earnmi.data.SWImpl import SWImpl
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    dataSet = {}
    total_count = 0
    occurKPattenDayMap = {}
    kBarListTotalDay = 0
    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None
        kBarListTotalDay = len(barList)
        for bar in barList:
            ##先识别形态
            kEncodeValue = KPattern.encode1KAgo1(indicator)
            if kEncodeValue is None:
                indicator.update_bar(bar)
                preBar = bar
                continue
            total_count += 1
            dataItem: CountItem = None
            if dataSet.__contains__(kEncodeValue):
                dataItem = dataSet[kEncodeValue]
            else:
                dataItem = CountItem()
                dataSet[kEncodeValue] = dataItem
            ##第二天的收益
            pct = ((bar.high_price + bar.close_price) / 2 -
                   preBar.close_price) / preBar.close_price
            ##收录当前形态
            #dataItem.values.append(value)
            dataItem.count_total += 1
            dataItem.pct_total += pct
            if pct > 0.000001:
                dataItem.count_earn += 1
                dataItem.pct_earn += pct
            indicator.update_bar(bar)
            preBar = bar

            occurDayKey = preBar.datetime.year * 13 * 35 + preBar.datetime.month * 35 + preBar.datetime.day
            occurKPattenDayMap[occurDayKey] = True

        ##打印当前形态
    occur_count = 0
    print(f"总共分析{total_count}个形态,识别出{len(dataSet)}个形态,有意义的形态有:")
    max_succ_rate = 0
    min_succ_rate = 100
    ret_list = []
    for key, dataItem in dataSet.items():
        success_rate = 100 * dataItem.count_earn / dataItem.count_total
        if dataItem.count_total < 500:
            continue
        if abs(int(success_rate - 50)) < 10:
            continue
        ret_list.append(key)
        earn_pct = 100 * dataItem.pct_earn / dataItem.count_earn
        if success_rate < 50:
            earn_pct = 100 * (dataItem.pct_total - dataItem.pct_earn) / (
                dataItem.count_total - dataItem.count_earn)
        avg_pct = 100 * dataItem.pct_total / dataItem.count_total
        occur_count += dataItem.count_total
        occur_rate = 100 * dataItem.count_total / total_count
        max_succ_rate = max(success_rate, max_succ_rate)
        min_succ_rate = min(success_rate, min_succ_rate)
        print(
            f"{key}: total={dataItem.count_total},suc=%.2f%%,occur_rate=%.2f%%,earn_pct:%.2f%%,avg_pct:%.2f%%)"
            % (success_rate, occur_rate, earn_pct, avg_pct))

    total_occur_rate = 100 * occur_count / total_count
    total_occur_in_day_rate = 100 * len(
        occurKPattenDayMap) / kBarListTotalDay  ##在所有交易日中,k线形态日出占比:
    print(f"总共:occur_rate=%.2f%%, min_succ_rate=%.2f%%, max_succ_rate=%.2f%%"
          f"\n所有交易日中,k线形态日出占比:%.2f%%" %
          (total_occur_rate, min_succ_rate, max_succ_rate,
           total_occur_in_day_rate))
    print(f"{ret_list}")
Esempio n. 15
0
    def run(self, bars: list, item: IndicatorItem = None):
        if (bars[0].datetime > bars[-1].datetime):
            bars = bars.__reversed__()
        data = []
        index = []
        indicator = Indicator()
        ### 初始化columns
        columns = ['Open', 'High', 'Low', 'Close', "Volume"]

        holdbarMaker: HoldBarMaker = None
        if not item is None:
            holdbarMaker = item._holdbarMaker
            if not holdbarMaker is None:
                holdbarMaker.reset()
            item_names = item.getNames()
            item_size = len(item_names)
            for i in range(item_size):
                columns.append(item_names[i])
            columns.append("signal_buy")
            columns.append("signal_sell")
            columns.append("signal_redTag")

        item_signal_buy_open = False
        item_signal_sell_open = False
        item_signal_redTag_open = False

        item_signal = Signal()
        ##current_hold_bar: HoldBar = None
        has_buy = False
        for bar in bars:
            index.append(bar.datetime)
            list = [
                bar.open_price, bar.high_price, bar.low_price, bar.close_price,
                bar.volume
            ]
            indicator.update_bar(bar)

            if not item is None:
                item_names = item.getNames()
                item_size = len(item_names)
                item_signal.reset()
                item_signal.hasBuy = has_buy
                item_value = item.getValues(indicator, bar, item_signal)
                for i in range(item_size):
                    list.append(item_value[item_names[i]])
                if item_signal.buy:
                    list.append(bar.low_price * 0.99)
                    item_signal_buy_open = True
                    has_buy = True
                    ##生成一个新的holdbar。
                    if not holdbarMaker is None:
                        holdbarMaker.onHoldStart(bar)

                else:
                    ##更新holdBar
                    if not holdbarMaker is None:
                        holdbarMaker.onHoldUpdate(bar)

                    list.append(np.nan)

                if item_signal.sell:
                    list.append(bar.high_price * 1.01)
                    item_signal_sell_open = True
                    has_buy = False
                    ##结束目前的HoldBar
                    if not holdbarMaker is None:
                        holdbarMaker.onHoldEnd()
                else:
                    list.append(np.nan)

                if item_signal.redTag:
                    item_signal_redTag_open = True
                    list.append(bar.low_price * 0.99)
                else:
                    list.append(np.nan)

            data.append(list)

        trades = pd.DataFrame(data, index=index, columns=columns)
        return trades, item_signal_buy_open, item_signal_sell_open, item_signal_redTag_open
Esempio n. 16
0
 def onStart(self, code: str) -> bool:
     self.indicator = Indicator(40)
     self.traceCode = code
     self.traceName = self.sw.getSw2Name(code)
     return True
Esempio n. 17
0
 def onStart(self, code: str) -> bool:
     self.indicator = Indicator(40)
     self.code = code
     return True
Esempio n. 18
0
def printKPatterMoreDetail(kPatters=[
    535, 359, 1239, 1415, 1072, 712, 1412, 1240, 1413, 888, 2823, 706, 1414,
    1064
]):
    from vnpy.trader.constant import Exchange
    from vnpy.trader.constant import Interval
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
    #pct_split = [-7, -5, -3, -1.0, 0, 1, 3, 5, 7]
    pct_split = [2]

    pctEncoder = FloatEncoder(pct_split)

    kPattersMap = {}
    for value in kPatters:
        kPattersMap[value] = True

    class InnerData(object):
        kValue: int  ##
        sell_disbute = np.zeros(pctEncoder.mask())  ##卖方力量分布情况
        buy_disbute = np.zeros(pctEncoder.mask())  #买方力量分布情况
        pass

    dataSet = {}
    occurDayMap = {}
    allTrayDay = 1

    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        traceItems: ['TraceIn3DayItem'] = []
        allTrayDay = max(allTrayDay, len(barList))

        for bar in barList:
            ###跟踪数据
            toDeleteList = []
            for traceItem in traceItems:
                traceItem.onTraceBar(bar)
                if traceItem.isFinished():
                    toDeleteList.append(traceItem)
                    if traceItem.isWanted():
                        occurBar = traceItem.firstBar
                        dayKey = occurBar.datetime.year * 13 * 35 + occurBar.datetime.month * 13 + occurBar.datetime.day
                        occurDayMap[dayKey] = True
                        ###归纳到统计里面
                        innerData: InnerData = dataSet.get(traceItem.kPattern)
                        if innerData is None:
                            innerData = InnerData()
                            innerData.kValue = traceItem.kPattern
                            dataSet[traceItem.kPattern] = innerData

                        sell_pct = traceItem.current_sell_pct
                        buy_pct = traceItem.current_buy_pct
                        innerData.buy_disbute[pctEncoder.encode(buy_pct)] += 1
                        innerData.sell_disbute[pctEncoder.encode(
                            sell_pct)] += 1
                        pass
            for traceItem in toDeleteList:
                traceItems.remove(traceItem)

            indicator.update_bar(bar)
            kEncodeValue = KPattern.encode2KAgo1(indicator)
            if kEncodeValue is None or kPattersMap.get(kEncodeValue) is None:
                continue
            traceItem = TraceIn3DayItem(kEncodeValue, bar)
            traceItems.append(traceItem)

    print(f"所有交易日中,有意义的k线形态出现占比:%.2f%%" %
          (100 * len(occurDayMap) / allTrayDay))
    for kValue, dataItem in dataSet.items():
        total_count1 = 0
        total_count2 = 0
        for cnt in dataItem.sell_disbute:
            total_count1 += cnt
        for cnt in dataItem.buy_disbute:
            total_count2 += cnt
        assert total_count1 == total_count2
        assert total_count1 > 0

        print(f"\n\nk:%6d, " % (kValue))

        print(f"   卖方价格分布:")
        for encode in range(0, len(dataItem.sell_disbute)):
            occurtRate = 100 * dataItem.sell_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

        print(f"   买方价格分布:")
        for encode in range(0, len(dataItem.buy_disbute)):
            occurtRate = 100 * dataItem.buy_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

    pass
Esempio n. 19
0
 def onCollectStart(self, code: str) -> bool:
     from earnmi.chart.Indicator import Indicator
     self.indicator = Indicator(40)
     self.code = code
     return True
Esempio n. 20
0
from earnmi.chart.Indicator import Indicator
from earnmi.data.MarketImpl import MarketImpl
from datetime import datetime, timedelta
import talib

code = "600155"
#code = '000300'
#801161.XSHG
market = MarketImpl()
market.addNotice(code)
market.setToday(datetime.now())

bars = market.getHistory().getKbars(code, 80)

indicator = Indicator()
indicator.update_bar(bars)

beta = talib.CORREL(indicator.high, indicator.low, 30)
print(beta)