Esempio n. 1
0
def ocr_image(image_path, langs='en', gpu=-1):
    # break the input languages into a comma separated list
    langs = langs.split(",")
    print("[INFO] OCR'ing with the following languages: {}".format(langs))
    # load the input image from disk
    image = cv2.imread(image_path)
    # OCR the input image using EasyOCR
    print("[INFO] OCR'ing input image...")
    reader = Reader(langs, gpu=gpu > 0)
    results = reader.readtext(image)

    all_text = ''
    # loop over the results
    for (bbox, text, prob) in results:
        # display the OCR'd text and associated probability
        print("[INFO] {:.4f}: {}".format(prob, text))
        # unpack the bounding box
        (tl, tr, br, bl) = bbox
        tl = (int(tl[0]), int(tl[1]))
        tr = (int(tr[0]), int(tr[1]))
        br = (int(br[0]), int(br[1]))
        bl = (int(bl[0]), int(bl[1]))
        # cleanup the text and draw the box surrounding the text along
        # with the OCR'd text itself
        text = cleanup_text(text)
        cv2.rectangle(image, tl, br, (0, 255, 0), 2)
        cv2.putText(image, text, (tl[0], tl[1] - 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
        all_text += ' ' + text

    # resize image for UI purpose
    h, w, _ = image.shape

    # image = cv2.resize(image, (700, 700))
    return image, all_text
Esempio n. 2
0
    def caract_ocr(imagem, boxs):

        imagem = Image.fromarray(im)
        #print(type(imagem))
        #print(boxs[3][0],boxs[3][1],(boxs[3][0]+boxs[3][2]),(boxs[3][1]+boxs[3][3]))

        id_caracteres = []

        for i in range(len(boxs)):
            #print(i)
            #print(boxs[i][0],boxs[i][1],(boxs[i][0]+boxs[i][2]),(boxs[i][1]+boxs[i][3]))
            etiqueta = imagem.crop(
                (boxs[i][0], boxs[i][1], (boxs[i][0] + boxs[i][2]),
                 (boxs[i][1] + boxs[i][3])))
            display_img(etiqueta)

            etiqueta_w, etiqueta_h = etiqueta.size
            #0.60 e 0.70 da largura e altura da imagem sao baseados na posição relativa estimada das letras alvo.
            letras = etiqueta.crop(
                (etiqueta_w * 0.60, etiqueta_h * 0.70, etiqueta_w, etiqueta_h))
            display_img(letras)

            letras = np.array(letras)
            reader = Reader(['en'])
            results = reader.readtext(letras)

            #letters =

            if len(results) != 0:

                id_caracteres.append(results[0][1])

        return id_caracteres
Esempio n. 3
0
def upload_image():
    file = request.files['file']
    if not file:
        return {'error': 'Missing file'}, 400
    
    now = datetime.now()
    filename = now.strftime("%Y%m%d_%H%M%S") + "_" + str(randint(000, 999))
    file.save(os.path.join(uploads_dir, secure_filename(filename + '.jpg')))
    images = cv2.imread(uploads_dir + '/' + filename + '.jpg')
   
    reader = Reader(['en'])
    results = reader.readtext(images)
    
    text_array = []
    confidence_level = []
    for result in results:
        text_array.append(result[1])
        confidence_level.append(result[2])
        
    response = {
        'text': text_array, 
        'confidence': confidence_level, 
    }

    return jsonify({"data": response}), 200
Esempio n. 4
0
def get_text_areas(pixels):
    """
    Easy OCR function. Gets an image at the path below and returns the 
    text of the picture. 
    """
    reader = Reader(['fr'], gpu=False, verbose=False)
    ocr_data = reader.readtext(pixels)
    # ocr data[0][2] is the level of confidence of the result
    # If the result is near 0, it is very likely that there is no text
    try:
        if ocr_data[0][2] > 0.3:
            return ocr_data
    except Exception:
        return []
Esempio n. 5
0
async def read(printer: Printer):
    ocr_reader = Reader(['en'])
    screenshot = await take_screenshot(printer)
    screenshot_io = io.BytesIO()
    screenshot.save(screenshot_io, format='PNG')
    boxes = await asyncio.get_event_loop().run_in_executor(
        None,
        functools.partial(ocr_reader.readtext,
                          screenshot_io.getvalue(),
                          detail=0))
    words = []
    for box in boxes:
        words += [word.strip() for word in box.split()]
    text = ' '.join(words)
    logger.info('text on screen: %s', text)
    return text
Esempio n. 6
0
                help="comma separated list of languages to OCR")
ap.add_argument("-g",
                "--gpu",
                type=int,
                default=-1,
                help="whether or not GPU should be used")
args = vars(ap.parse_args())

# break the input languages into a comma separated list
langs = args["langs"].split(",")
print("[INFO] OCR'ing with the following languages: {}".format(langs))

image = cv2.imread(args["image"])

print("[INFO] OCR'ing input image...")
reader = Reader(langs, gpu=args["gpu"] > 0)
results = reader.readtext(image)

for (bbox, text, prob) in results:
    # display the OCR'd text and associated probability
    print("[INFO] {:.4f}: {}".format(prob, text))

    # unpack the bounding box
    (tl, tr, br, bl) = bbox
    tl = (int(tl[0]), int(tl[1]))
    tr = (int(tr[0]), int(tr[1]))
    br = (int(br[0]), int(br[1]))
    bl = (int(bl[0]), int(bl[1]))

    # cleanup the text and draw the box surrounding the text along
    # with the OCR'd text itself
Esempio n. 7
0
                type=str,
                default="en",
                help="comma separated list of languages to OCR")
ap.add_argument("-g",
                "--gpu",
                type=int,
                default=-1,
                help="whether or not GPU should be used")
args = vars(ap.parse_args())

now = datetime.now()
# break the input languages into a comma separated list
langs = args["langs"].split(",")
use_tesseract = True
print("[INFO] OCR'ing with the following languages: {}".format(langs))
reader = Reader(langs, gpu=True)

detection_pipeline = [{
    "function": "sharpening",
    "kwargs": {}
}, {
    "function": "bilateral_filter",
    "kwargs": {
        "d": 7,
        "sigmaColor": 50,
        "sigmaSpace": 50
    }
}]
recognition_pipeline = [{
    "function": "cvt_to_gray",
    "kwargs": {}
                "--langs",
                type=str,
                default="en",
                help="comma separated list of languages to OCR")
ap.add_argument("-g",
                "--gpu",
                type=int,
                default=-1,
                help="whether or not GPU should be used")
args = vars(ap.parse_args())

now = datetime.now()
# break the input languages into a comma separated list
langs = args["langs"].split(",")
print("[INFO] OCR'ing with the following languages: {}".format(langs))
reader = Reader(langs, gpu=True)

# load the input image from disk

# detection_pipeline= [{"function":"cvt_to_gray", "kwargs":{}}, {"function":"apply_CAHE", "kwargs":{"clipLimit":2.0, "tileGridSize":(8,8)}}]
# detection_pipeline= [{"function":"cvt_to_gray", "kwargs":{}}]
detection_pipeline = []
# detection_pipeline= [{"function":"bilateral_filter", "kwargs":{"d":7, "sigmaColor":50, "sigmaSpace":50}}]
# detection_pipeline= [{"function":"cvt_to_gray", "kwargs":{}},{"function":"bilateral_filter", "kwargs":{"d":7, "sigmaColor":50, "sigmaSpace":50}}]
# detection_pipeline= [{"function":"sharpening", "kwargs":{}}]
# detection_pipeline= [{"function":"sharpening", "kwargs":{}},{"function":"bilateral_filter", "kwargs":{"d":7, "sigmaColor":50, "sigmaSpace":50}}]
# detection_pipeline= [{"function":"cvt_to_gray", "kwargs":{}},{"function":"sharpening", "kwargs":{}},{"function":"bilateral_filter", "kwargs":{"d":7, "sigmaColor":50, "sigmaSpace":50}}]
# detection_pipeline= [{"function":"cvt_to_gray", "kwargs":{}}, {"function":"apply_CAHE", "kwargs":{"clipLimit":2.0, "tileGridSize":(8,8)}},{"function":"bilateral_filter", "kwargs":{"d":5, "sigmaColor":50, "sigmaSpace":50}}]
# detection_pipeline= [{"function":"cvt_to_gray", "kwargs":{}},{"function":"otsu", "kwargs":{}}]
# recognition_pipeline = [{"function":"cvt_to_gray", "kwargs":{}},{"function":"resize_image", "kwargs":{"new_height":128}}, {"function":"bilateral_filter", "kwargs":{"d":5, "sigmaColor":50, "sigmaSpace":150}}]
Esempio n. 9
0
'''
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to input image to be OCR'd")
ap.add_argumenti("-l", "--langs", type=str, default="en",
	help="comma separated list of languages to OCR")
ap.add_argument("-g", "--gpu", type=int, default=-1,
	help="whether or not GPU should be used")
args = vars(ap.parse_args())
'''

# break the input languages into a comma separated list
for show_image in final_images:
    langs = ('en').split(",")
    print("[INFO] OCR'ing with the following languages: {}".format(langs))

    # load the input image from disk
    imageread = show_image
    # OCR the input image using EasyOCR
    print("[INFO] OCR'ing input image...")
    reader = Reader(langs)
    results = reader.readtext(imageread)

    # loop over the results
    for (bbox, text, prob) in results:
        word_list.append(text)
    print(word_list)
    word_list.append("J(&?`^")
    # show the output image
print(word_list)
Esempio n. 10
0
from easyocr import Reader
import cv2


def cleanup_text(text):
    '''nếu kí tự đưa vào không nằm trong bảng ACII thì không put text được '''
    return "".join([c if ord(c) < 128 else "" for c in text]).strip()


'''nếu không đưa tham số nào vào strip thì mặc định là dấu cách,
nếu text đưa vào là 1 câu thì sẽ tách thành các chữ, return ra 1 chuỗi gồm các chữ'''
lang = ['en']
image = cv2.imread('image.jpg')
reader = Reader(lang, gpu=True)
results = reader.readtext(image)
for (bbox, text, prob) in results:
    print(f'{prob}:{text}')
    (tl, tr, br, bl) = bbox
    tl = (int(tl[0]), int(tl[1]))
    tr = (int(tr[0]), int(tr[1]))
    br = (int(br[0]), int(br[1]))
    bl = (int(bl[0]), int(bl[1]))
    text = cleanup_text(text)
    with open('result.txt', 'a') as f:
        f.write(text)
        f.close()
cv2.imshow('image', image)
cv2.waitKey(0)
Esempio n. 11
0
# break the input languages into a comma separated list
languages = args["langs"].split(",")
print("[INFO] OCR'ing with the following languages: {}".format(langs))

# convert url to image object is is_url is True
if args["is_url"]:
    image_ = url_to_image(args["image"])
else:
    image_ = args["image"]

# load the input image from disk
image = cv2.imread(image_)

# OCR the input image using EasyOCR
print("[INFO] OCR'ing input image...")
reader = Reader(languages, gpu=args["use_gpu"])

results = reader.readtext(image)

# Note: Unlike Tesseract, EasyOCR can work with
# OpenCV’s default BGR color channel ordering.
# Therefore, we do not need to swap color channels
# after loading the image.

# loop over the results
for (bbox, text, prob) in results:

    # display the OCR'd text and associated probability
    print("[INFO] {:.4f}: {}".format(prob, text))

    # unpack the bounding box