def call(self, inputs, training=False):
        input_image_feature, patch_type_ids = inputs

        input_image_feature = self.dropout_input(input_image_feature,
                                                 training=training)
        patch_embeddings = tf.einsum("abc,cd->abd", input_image_feature,
                                     self.image_projector)

        input_shape = layers.get_shape_list(patch_embeddings)
        batch_size = input_shape[0]
        seq_length = input_shape[1]
        width = input_shape[2]

        # This vocab will be small so we always do one-hot here, since it is always
        # faster for a small vocabulary.
        flat_token_type_ids = tf.reshape(patch_type_ids, [-1])
        one_hot_ids = tf.one_hot(flat_token_type_ids,
                                 depth=self.patch_type_vocab_size)
        type_embeddings = tf.matmul(one_hot_ids, self.patch_type_embeddings)
        type_embeddings = tf.reshape(type_embeddings,
                                     [batch_size, seq_length, width])

        position_embeddings = tf.gather(self.patch_position_embeddings,
                                        tf.range(0, seq_length))
        position_embeddings = tf.expand_dims(position_embeddings, 0)

        embeddings = patch_embeddings + type_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings, name="ImageEmbLayerNorm")
        embeddings = self.dropout_output(embeddings, training=training)
        return embeddings
    def call(self, inputs, training=False):
        input_ids, input_mask, segment_ids, masked_image_feature, image_mask = inputs

        token_embedding_output = self.embeddings([input_ids, segment_ids],
                                                 training=training)

        from_shape = layers.get_shape_list(masked_image_feature)
        batch_size = from_shape[0]
        image_seq_length = from_shape[1]
        input_patch_type_ids = tf.ones(shape=[batch_size, image_seq_length],
                                       dtype=tf.int32)

        image_embedding_output = self.image_embeddings(
            [masked_image_feature, input_patch_type_ids], training=training)

        embedding_output = tf.concat(
            [token_embedding_output, image_embedding_output], axis=1)

        attention_mask = layers.get_attn_mask_imagebert(
            input_ids, input_mask, masked_image_feature, image_mask)

        encoder_outputs = self.encoder([embedding_output, attention_mask],
                                       training=training)
        pooled_output = self.pooler(encoder_outputs[0][-1][:, 0])
        outputs = (encoder_outputs[0][-1], pooled_output)
        return outputs
Esempio n. 3
0
    def call(self, inputs,
             input_mask=None,
             segment_ids=None,
             history_answer_marker=None,
             training=False):

        if isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            input_mask = inputs[1] if len(inputs) > 1 else input_mask
            segment_ids = inputs[2] if len(inputs) > 2 else segment_ids
            history_answer_marker = inputs[3] if len(inputs) > 3 else history_answer_marker
        else:
            input_ids = inputs

        input_shape = layers.get_shape_list(input_ids)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)

        if segment_ids is None:
            segment_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)

        if history_answer_marker is None:
            history_answer_marker = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)

        with tf.variable_scope("embeddings"):
            # Perform embedding lookup on the word ids.
            (embedding_output, embedding_table) = embedding_lookup(
                input_ids=input_ids,
                vocab_size=self.config.vocab_size,
                embedding_size=self.config.hidden_size,
                initializer_range=self.config.initializer_range,
                word_embedding_name="word_embeddings",
                use_one_hot_embeddings=False)

            # Add positional embeddings and token type embeddings, then layer
            # normalize and perform dropout.
            embedding_output = embedding_postprocessor(
                input_tensor=embedding_output,
                use_token_type=True,
                token_type_ids=segment_ids,
                token_type_vocab_size=self.config.type_vocab_size,
                token_type_embedding_name="token_type_embeddings",
                use_position_embeddings=True,
                position_embedding_name="position_embeddings",
                initializer_range=self.config.initializer_range,
                max_position_embeddings=self.config.max_position_embeddings,
                use_history_answer_embedding=True,
                history_answer_marker=history_answer_marker,
                history_answer_embedding_vocab_size=2,
                history_answer_embedding_name='history_answer_embedding',
                dropout_prob=self.config.hidden_dropout_prob)

        attention_mask = layers.get_attn_mask_bert(input_ids, input_mask)
        encoder_outputs = self.encoder([embedding_output, attention_mask], training=training)
        pooled_output = self.pooler(encoder_outputs[0][-1][:, 0])
        outputs = (encoder_outputs[0][-1], pooled_output)
        return outputs
Esempio n. 4
0
    def call(self, inputs, input_mask=None, segment_ids=None, training=False):

        if isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            input_mask = inputs[1] if len(inputs) > 1 else input_mask
            segment_ids = inputs[2] if len(inputs) > 2 else segment_ids
        else:
            input_ids = inputs

        input_shape = layers.get_shape_list(input_ids)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length],
                                 dtype=tf.int32)

        if segment_ids is None:
            segment_ids = tf.zeros(shape=[batch_size, seq_length],
                                   dtype=tf.int32)

        embedding_output = self.embeddings([input_ids, segment_ids],
                                           training=training)
        attention_mask = layers.get_attn_mask_bert(input_ids, input_mask)
        encoder_outputs = self.encoder([embedding_output, attention_mask],
                                       training=training)
        pooled_output = self.pooler(encoder_outputs[0][-1][:, 0])
        outputs = (encoder_outputs[0][-1], pooled_output)
        return outputs
Esempio n. 5
0
    def call(self, inputs, training=False):
        input_video_feature, video_token_type_ids = inputs
        clip_embeddings = tf.einsum("abc,cd->abd", input_video_feature,
                                    self.video_embeddings)

        input_shape = layers.get_shape_list(clip_embeddings)
        batch_size = input_shape[0]
        seq_length = input_shape[1]
        width = input_shape[2]

        # This vocab will be small so we always do one-hot here, since it is always
        # faster for a small vocabulary.
        flat_token_type_ids = tf.reshape(video_token_type_ids, [-1])
        one_hot_ids = tf.one_hot(flat_token_type_ids, depth=self.clip_size)
        clip_type_embeddings = tf.matmul(one_hot_ids,
                                         self.clip_type_embeddings)
        clip_type_embeddings = tf.reshape(clip_type_embeddings,
                                          [batch_size, seq_length, width])
        clip_embeddings += clip_type_embeddings

        position_embeddings = tf.gather(self.clip_position_embeddings,
                                        tf.range(0, seq_length))
        position_embeddings = tf.expand_dims(position_embeddings, 0)

        clip_embeddings += position_embeddings

        output = self.LayerNorm(clip_embeddings, name="LayerNorm")
        output = self.dropout(output, training=training)
        return output
Esempio n. 6
0
    def call(self, inputs, masked_lm_positions=None, **kwargs):
        """

        Args:

            inputs : [input_ids, input_mask, segment_ids]
            masked_lm_positions: masked_lm_positions

        Returns:

            sequence_output, pooled_output

        Examples::

            hit-roberta-base-zh

            hit-roberta-large-zh

            pai-roberta-base-zh

            pai-roberta-large-zh

            model = model_zoo.get_pretrained_model('hit-roberta-base-zh')
            outputs = model([input_ids, input_mask, segment_ids], mode=mode)

        """

        training = kwargs['mode'] == tf.estimator.ModeKeys.TRAIN

        if kwargs.get("output_features", True) == True:
            outputs = self.bert(inputs, training=training)
            sequence_output = outputs[0]
            pooled_output = outputs[1]
            return sequence_output, pooled_output
        else:
            outputs = self.bert(inputs, training=training)
            sequence_output = outputs[0]
            pooled_output = outputs[1]
            input_shape = layers.get_shape_list(sequence_output)
            batch_size = input_shape[0]
            seq_length = input_shape[1]
            if masked_lm_positions is None:
                masked_lm_positions = tf.ones(shape=[batch_size, seq_length],
                                              dtype=tf.int64)

            mlm_logits = self.mlm(sequence_output, masked_lm_positions)
            nsp_logits = self.nsp(pooled_output)

            return mlm_logits, nsp_logits, pooled_output
Esempio n. 7
0
def matching_embedding_margin_loss(emb1, emb2):
    margin = 0.3
    batch_size = layers.get_shape_list(emb1)[0]
    emb1_norm = tf.maximum(1e-12, tf.norm(emb1, axis=1))
    tf.summary.scalar('emb1_norm_mean', tf.reduce_mean(emb1_norm))
    emb1_rep = tf.div(tf.transpose(emb1), emb1_norm)
    emb2_norm = tf.maximum(1e-12, tf.norm(emb2, axis=1))
    tf.summary.scalar('emb2_norm_mean', tf.reduce_mean(emb2_norm))
    emb2_rep = tf.div(tf.transpose(emb2), emb2_norm)

    dis = tf.matmul(tf.transpose(emb1_rep), emb2_rep)
    tf.summary.scalar('dis_mean', tf.reduce_mean(dis))

    positive_distance = tf.reshape(tf.diag_part(dis), [batch_size, 1])
    tf.summary.scalar('positive_distance_mean',
                      tf.reduce_mean(positive_distance))

    term1 = tf.reduce_mean(tf.maximum(
        0., -positive_distance + (dis - margin * tf.eye(batch_size)) + margin),
                           axis=1)

    loss = tf.reduce_mean(term1)
    return loss
    def call(self,
             input_ids,
             input_mask=None,
             segment_ids=None,
             masked_lm_positions=None,
             image_feature=None,
             image_mask=None,
             masked_patch_positions=None,
             **kwargs):
        """
        Examples::

            model = model_zoo.get_pretrained_model('icbu-imagebert-small-en')

            mlm_logits, nsp_logits, mpm_logits, target_raw_patch_features = \
                model(input_ids,
                      input_mask=input_mask,
                      segment_ids=token_type_ids,
                      image_feature=image_feature,
                      image_mask=image_mask,
                      masked_lm_positions=lm_positions,
                      masked_patch_positions=masked_patch_positions,
                      output_features=False,
                      mode=mode)

        """

        training = kwargs['mode'] == tf.estimator.ModeKeys.TRAIN

        input_shape = layers.get_shape_list(input_ids)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length],
                                 dtype=tf.int32)

        if segment_ids is None:
            segment_ids = tf.zeros(shape=[batch_size, seq_length],
                                   dtype=tf.int32)

        if image_mask is None:
            image_mask = tf.ones(
                shape=[batch_size, self.config.max_patch_position_embeddings],
                dtype=tf.int32)

        if masked_lm_positions is None:
            masked_lm_positions = tf.ones(shape=[batch_size, seq_length],
                                          dtype=tf.int64)

        if masked_patch_positions is None:
            masked_patch_positions = tf.ones(
                shape=[batch_size, self.config.masked_image_token_num],
                dtype=tf.int64)

        if image_feature is None:
            image_feature = tf.constant(
                [[1.0] * 131072, [1.0] * 131072, [1.0] * 131072],
                dtype=tf.float32)

        image_feature = tf.reshape(image_feature, [
            -1, self.config.max_patch_position_embeddings,
            self.config.patch_feature_size
        ])
        if kwargs['mode'] == tf.estimator.ModeKeys.PREDICT:
            masked_image_feature = image_feature
        else:
            masked_image_feature = self.mask_patch_features(
                image_feature, masked_patch_positions)

        inputs = [
            input_ids, input_mask, segment_ids, masked_image_feature,
            image_mask
        ]

        if kwargs.get("output_features", True) == True:
            outputs = self.bert(inputs, training=training)
            sequence_output = outputs[0]
            pooled_output = outputs[1]
            return sequence_output, pooled_output
        else:
            outputs = self.bert(inputs, training=training)
            sequence_output = outputs[0]
            text_sequence_output = sequence_output[:, :seq_length, :]
            image_sequence_output = sequence_output[:, seq_length:, :]
            pooled_output = outputs[1]
            mlm_logits = self.mlm(text_sequence_output, masked_lm_positions)
            nsp_logits = self.nsp(pooled_output)
            mpm_logits = self.mpm(image_sequence_output,
                                  masked_patch_positions)

            target_raw_patch_features = layers.gather_indexes(
                image_feature, masked_patch_positions)

            return mlm_logits, nsp_logits, mpm_logits, target_raw_patch_features, pooled_output
Esempio n. 9
0
    def call(self,
             input_ids,
             input_mask=None,
             segment_ids=None,
             masked_lm_positions=None,
             video_feature=None,
             video_mask=None,
             masked_clip_positions=None,
             **kwargs):

        training = kwargs['mode'] == tf.estimator.ModeKeys.TRAIN

        input_shape = layers.get_shape_list(input_ids)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length],
                                 dtype=tf.int32)

        if segment_ids is None:
            segment_ids = tf.zeros(shape=[batch_size, seq_length],
                                   dtype=tf.int32)

        if video_mask is None:
            #video_mask = tf.constant([[0] * 10, [0] * 10, [0] * 10], dtype=tf.int32)
            video_mask = tf.ones(shape=[batch_size, 10], dtype=tf.int32)

        if masked_lm_positions is None:
            masked_lm_positions = tf.ones(shape=[batch_size, seq_length],
                                          dtype=tf.int64)

        if masked_clip_positions is None:
            masked_clip_positions = tf.ones(shape=[batch_size, 4],
                                            dtype=tf.int64)

        if video_feature is None:
            video_feature = tf.constant(
                [[1.0] * 15360, [1.0] * 15360, [1.0] * 15360],
                dtype=tf.float32)

        video_feature = tf.reshape(video_feature, [-1, 10, 1536])
        masked_video_feature = self.mask_clip_features(video_feature,
                                                       masked_clip_positions)
        inputs = [
            input_ids, input_mask, segment_ids, masked_video_feature,
            video_mask
        ]

        if kwargs.get("output_features", True) == True:
            outputs = self.bert(inputs, training=training)
            sequence_output = outputs[0]
            pooled_output = outputs[1]
            return sequence_output, pooled_output
        else:
            outputs = self.bert(inputs, training=training)
            sequence_output = outputs[0]
            pooled_output = outputs[1]
            mlm_logits = self.mlm(sequence_output, masked_lm_positions)
            nsp_logits = self.nsp(pooled_output)
            mvc_logits = self.mvc(sequence_output, masked_clip_positions,
                                  seq_length)

            target_raw_clip_features = layers.gather_indexes(
                video_feature, masked_clip_positions)

            return mlm_logits, nsp_logits, mvc_logits, target_raw_clip_features, pooled_output