Esempio n. 1
0
def dataStatistics(request):
    supplierNumber = SupplierList.objects.values('supplier_class').annotate(
        dcount=Count('supplier_class')).order_by('-dcount')
    supplier_count = list(supplierNumber.values_list('dcount'))
    supplier_count = [x[0] for x in supplier_count]
    supplier_class = list(supplierNumber.values_list('supplier_class'))
    supplier_class = [x[0] for x in supplier_class]
    chart = Echart('评审供应商数量', 'TaTaTa')
    chart.use(Bar('China', supplier_count))
    chart.use(Legend(['GDP']))
    chart.use(Axis('category', 'bottom', data=supplier_class))

    supplierNumber = SupplierList.objects.values('position_abbr').annotate(
        dcount=Count('position_abbr')).order_by('-dcount')
    abbr_count = list(supplierNumber.values_list('dcount'))
    abbr_count = [x[0] for x in abbr_count][:10]
    position_abbr = list(supplierNumber.values_list('position_abbr'))
    position_abbr = [x[0] for x in position_abbr][:10]

    chart2 = Echart('供应商分布', 'TaTaTa')
    chart2.use(Bar('China', abbr_count))
    chart2.use(Legend(['GDP']))
    chart2.use(Axis('category', 'bottom', data=position_abbr))

    return render(request, 'dataStatistics.html', locals())
def viewableData(dataJson):
    statisticInfo = json.loads(dataJson)
    # 拆分Json文件,拆成多个列表
    # 网站列表,最大rtt时间,平均rtt时间,丢包率
    hostList, maxList, avgList, dropRateList = [], [], [], []
    for i in statisticInfo:
        hostList.append(i)
        maxList.append(statisticInfo[i]['max_rtt'])
        avgList.append(statisticInfo[i]['median_rtt'])
        dropRateList.append(float(statisticInfo[i]['drop_rate'][:-1]))

    # 对网页进行初始化处理
    chart = Echart(title='ping结果统计', width='auto', height='auto')

    # 设置三条数据
    chart.use(Bar('maxList', maxList, tpye='vertical'))
    chart.use(Bar('avgList', avgList, tpye='vertical'))
    chart.use(Bar('dropRateList', dropRateList, tpye='certical'))

    # 设置y轴
    chart.use(
        Axis('category', 'left', data=hostList, axisLabel={'interval': 0}))

    # 启用显示
    chart.use(Tooltip(trigger='axis'))
    # 启用图标
    chart.use(
        Legend(['maxList', 'avgList', 'dropRateList'],
               position=('center', 'top')))
    # 启用工具栏
    feature = {
        'dataZoom': {
            'show': True,
            'title': {
                'dataZoom': '区域缩放',
                'dataZoomReset': '区域缩放后退'
            }
        },
        'magicType': {
            'show': True,
            'type': ['line', 'bar', 'stack', 'tiled']
        },
        'restore': {
            'show': True,
            'title': '还原'
        }
    }
    # 开启工具盒子
    chart.use(Toolbox(feature=feature, orient='vertical', show=True))

    # 展示可视化数据
    chart.plot()

    # 存储html
    chart.save(os.getcwd() + '/', 'ping可视化数据')
Esempio n. 3
0
def main():
    urls = [
        'http://www.weather.com.cn/textFC/hz.shtml']
    # 'http://www.weather.com.cn/textFC/hb.shtml',
    # 'http://www.weather.com.cn/textFC/db.shtml',
    # 'http://www.weather.com.cn/textFC/hd.shtml',
    # 'http://www.weather.com.cn/textFC/hn.shtml',
    # 'http://www.weather.com.cn/textFC/xb.shtml',
    # 'http://www.weather.com.cn/textFC/xn.shtml
    for url in urls:
        get_temperature(url)
        time.sleep(2)

    SORTED_TEMPERATURE_LIST = sorted(TEMPERATURE_LIST, key=lambda x: int(x["min"]), reverse=True)
    TOP20_TEMPERATURE_LIST = SORTED_TEMPERATURE_LIST[0:20]
    print(TOP20_TEMPERATURE_LIST)
    TOP20_CITY_LIST = []
    TOP20_MIN_LIST = []
    for city_min in TOP20_TEMPERATURE_LIST:
        TOP20_CITY_LIST.append(city_min['city'])
        TOP20_MIN_LIST.append(city_min['min'])
    # #获取
    # 排序问题等到后续解决
    echart = Echart(u'全国最高温度排名', u'知了课堂贡献')
    bar = Bar(u'最高温度', TOP20_MIN_LIST)
    axis = Axis('category', 'bottom', data=TOP20_CITY_LIST)
    echart.use(bar)
    echart.use(axis)
    echart.plot()
Esempio n. 4
0
def index(request):
    # data = '我的名字叫蒋文华'
    # return render(request, 'index.html', {'data': data})

    if request.method == 'POST':
        form = SqlForm(request.POST)
        if form.is_valid():
            sql = form.cleaned_data['sql']
            title = form.cleaned_data['title']
            x = form.cleaned_data['x_label']
            y = form.cleaned_data['y_label']

            x1, y1 = conn('wboss', 'postgres', '', '10.0.0.141', '5432', sql)

            # y1 = [2, 3, 4, 5, 6]
            # x1 = ['Nov', 'Dec', 'Jan', 'Feb', 'marth']
            chart = Echart(title, '')
            chart.use(Bar(y, y1))
            chart.use(Legend(['GDP']))
            chart.use(Axis('category', 'bottom', data=x1, name=x))
            chart.use(Tooltip())

            chart.plot()
            # return HttpResponse(res)
    else:
        form = SqlForm()
    return render(request, 'index.html', {'form': form})
Esempio n. 5
0
 def bar():
     chart = Echart('GDP', 'This is a fake chart')
     chart.use(Bar('China', [2, 3, 4, 5]))
     chart.use(Legend(['GDP']))
     chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan',
                                                'Feb']))
     return jsonify(chart.json)
def display_temperature():
    #url各区为华北,东北,华东,华中,华南,西北,西南
    urls = [
        'http://www.weather.com.cn/textFC/hb.shtml',
        'http://www.weather.com.cn/textFC/db.shtml',
        'http://www.weather.com.cn/textFC/hd.shtml',
        'http://www.weather.com.cn/textFC/hz.shtml',
        'http://www.weather.com.cn/textFC/hn.shtml',
        'http://www.weather.com.cn/textFC/xb.shtml',
        'http://www.weather.com.cn/textFC/xn.shtml'
    ]
    #循环传各区url参数并执行get气温函数
    for url in urls:
        get_temperature(url)
        time.sleep(2)  #每爬一个页面停顿防止过度干扰服务器不友好
    #对执行完获得全国最高温进行排序
    SORTED_TEMPERATURE_LIST = sorted(TEMPERATURE_LIST,
                                     key=(lambda x: (int(x['max']))),
                                     reverse=True)
    #,页面显示不了这么多,故筛选排前20的并定义新变量赋值
    TOP20_TEMPERATURE_LIST = SORTED_TEMPERATURE_LIST[0:20]
    TOP20_CITY_LIST = []
    OP20_MAX_LIST = []
    for city_max in TOP20_TEMPERATURE_LIST:
        TOP20_CITY_LIST.append(city_max['city'])
        TOP20_MAX_LIST.append(city_max['max'])
    #用echarts库进行可视化制图
    echart = Echart(u'全国最高气温排名TOP1~20')
    bar = Bar(u'最高温度', TOP20_MAX_LIST)
    axis = Axis('category', 'left', data=TOP20_CITY_LIST)
    echart.use(bar)
    echart.use(axis)
    echart.plot()
Esempio n. 7
0
def main():
    # urls=['http://www.weather.com.cn/textFC/hb.shtml',
    #       'http://www.weather.com.cn/textFC/db.shtml',
    #       'http://www.weather.com.cn/textFC/hd.shtml',
    #       'http://www.weather.com.cn/textFC/hz.shtml',
    #       'http://www.weather.com.cn/textFC/hn.shtml',
    #       'http://www.weather.com.cn/textFC/xb.shtml',
    #       'http://www.weather.com.cn/textFC/xn.shtml',
    #       ]
    # for url in urls:
    #     get_temperature(url)
    #     time.sleep(2)
    #
    # line =  json.dumps(TEMPERATUR_LIST, ensure_ascii=False)
    # with open('temperature.json','w') as fp:
    #     fp.write(line.encode('utf-8'))

    with open('temperature.json', 'r') as fp:
        TEMPERATUR_LIST = json.load(fp, encoding='utf-8')

    SORTED_TEMPERATURE_LIST = sorted(
        TEMPERATUR_LIST, lambda x, y: cmp(int(y['max']), int(x['max'])))
    TOP20_TEMPERATURE_LIST = SORTED_TEMPERATURE_LIST[0:20]
    TOP20_CITY_LIST = []
    TOP20_MAX_LIST = []
    for city_max in TOP20_TEMPERATURE_LIST:
        TOP20_CITY_LIST.append(city_max['city'])
        TOP20_MAX_LIST.append(city_max['max'])

    echart = Echart(u'全国最高温度排名', u'ZG爬虫')
    bar = Bar(u'最高温度', TOP20_MAX_LIST)
    axis = Axis('category', 'bottom', data=TOP20_CITY_LIST)
    echart.use(bar)
    echart.use(axis)
    echart.plot()
def client_x9_load_scenes_draw_bar(filelist):
    pname, datas = arrage_logs(filelist)
    tags = list()
    json_data = list()

    # 绘图对象,包含标题设置
    chart = Echart(title, subtext)
    # 绘图数据
    for data in datas:
        tags.append(data)
        chart.use(Bar(data, datas[data], stack='time', label={'normal':{'show':True}}))
    # x轴
    chart.use(Axis('category', 'bottom', '设备', pname, axisLabel={'rotate':40,'interval':0}, axisTick={'interval':0}))
    # y轴
    chart.use(Axis('value', 'left', '秒'))
    # 标签,与之相似的还有个叫visualmap,但未实现
    chart.use(Legend(tags, top=80))
    # 添加工具栏,默认在右上角
    chart.use(Toolbox())
    # 设置绘图区域的位置,默认上留120,下留100
    chart.use(Grid())
    chart.json
    json_data.append(chart.get_opt())

    return json_data
def main():
    # target_urls = ['http://www.weather.com.cn/textFC/hb.shtml',
    #                'http://www.weather.com.cn/textFC/db.shtml',
    #                'http://www.weather.com.cn/textFC/hd.shtml',
    #                'http://www.weather.com.cn/textFC/hz.shtml',
    #                'http://www.weather.com.cn/textFC/hn.shtml',
    #                'http://www.weather.com.cn/textFC/xb.shtml',
    #                'http://www.weather.com.cn/textFC/xn.shtml']
    #
    # all_data = get_temperature(target_urls)
    # print(all_data)
    # 将数据保存到文件
    # with open('temperature.json', 'w', encoding='utf-8') as fw:
    #     fw.write(json.dumps(all_data))

    # 从文件中读取数据
    with open('temperature.json', 'r') as fr:
        all_data = json.loads(fr.read())
    # print(all_data)

    # 重新构造list结构
    temp_city_list = []
    for data in all_data:
        provence = data['provence']
        city_list = data['city_list']
        for city in city_list:
            city['city'] = '%s-%s' % (provence, city['city'])
            temp_city_list.append(city)
    print(temp_city_list)

    # 按照最高温度排序
    sort_max_temp_list = sorted(
        temp_city_list, key=lambda t: int(t.__getitem__('max_temperature')))
    # 按照最低温度排序
    sort_min_temp_list = sorted(
        temp_city_list, key=lambda t: int(t.__getitem__('min_temperature')))
    print(sort_max_temp_list)
    print(sort_min_temp_list)

    # 获取温度最高的10条数据
    top10_max = sort_max_temp_list[-10:]
    top10_max_city = []
    top10_max_temp = []
    print(top10_max)
    for item in top10_max:
        top10_max_city.append(item['city'])
        top10_max_temp.append(item['max_temperature'])

    # 获取温度最低的10条数据
    top10_min = sort_min_temp_list[:10]

    # 使用第三方Echarts库在浏览器中输出图形统计界面
    echart = Echart(u'全国温度统计')
    bar = Bar(u'最高温度', top10_max_temp)
    axis = Axis('category', 'bottom', data=top10_max_city)
    echart.use(bar)
    echart.use(axis)
    echart.plot()
Esempio n. 10
0
File: app.py Progetto: bonfy/feb
    def bar():
        # set bar color
        color = dict(color='#EE5500')

        chart = Echart('GDP', 'This is a fake chart')
        chart.use(Bar('China', [2, 3, 4, 5], itemStyle=dict(normal=color)))
        chart.use(Legend(['GDP']))
        chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan',
                                                   'Feb']))
        return jsonify(chart.json)
Esempio n. 11
0
    def xx(self, data):
        _PR = PR.getInstance()

        chart = Echart('GDP', 'This is a fake chart')
        chart.use(Bar('China', [2, 3, 4, 5]))
        chart.use(Legend(['GDP']))
        chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan',
                                                   'Feb']))
        _chart = chart.json
        print(_chart)
        _chart["tooltip"] = {}
        _PR.setResult(_chart)
        return _PR.getPRBytes()
Esempio n. 12
0
def main():
    urls = [
        'http://www.weather.com.cn/textFC/hb.shtml',
        'http://www.weather.com.cn/textFC/db.shtml',
        'http://www.weather.com.cn/textFC/hd.shtml',
        'http://www.weather.com.cn/textFC/hz.shtml',
        'http://www.weather.com.cn/textFC/hn.shtml',
        'http://www.weather.com.cn/textFC/xb.shtml',
        'http://www.weather.com.cn/textFC/xn.shtml',
    ]
    for url in urls:
        get_temperature(url)
        time.sleep(2)

    echarts = Echart(u'温度排名')
    bar_x = Bar(u'最低温度', MIN_LIST)
    bar_y = Bar(u'最高温度', MAX_LIST)
    axis = Axis('category', 'bottom', data=CITY_LIST)
    echarts.use(bar_x)
    echarts.use(bar_y)
    echarts.use(axis)
    echarts.plot()
Esempio n. 13
0
def data_visualization(temperature_list):
    top20_temperature_list = sorted(
        temperature_list, lambda x, y: cmp(int(x['min']), int(y['min'])))[0:20]
    city20_list = []
    min20_list = []
    for city_min in top20_temperature_list:
        city20_list.append(city_min['city'])
        min20_list.append(city_min['min'])

    echart_show = Echart(u'全国最低温度排名', u'小白打酱油提供', u'这是气温排名')
    bar = Bar(u'最低温度', min20_list)
    axis = Axis('category', 'bottom', data=city20_list)
    echart_show.use(bar)
    echart_show.use(axis)
    echart_show.plot()
Esempio n. 14
0
def main():
    urls=['http://www.weather.com.cn/textFC/hb.shtml',
          'http://www.weather.com.cn/textFC/db.shtml',
          'http://www.weather.com.cn/textFC/hd.shtml']
    for url in urls:
        get_temperature(url)

    #top10_max=max_list[0:10]
    #top10_cit=city_list[0:10]
    sorted_temprature_list=sorted(temperature_list,lambda x,y:cmp(int(x['max']),int(y['max'])))
    top10_temprature_list=sorted_temprature_list[0:8]
    top10_city_list=[]
    top10_max_list=[]
    for city_max in top10_temprature_list:
        top10_city_list.append(city_max['city'])
        top10_max_list.append(city_max['max'])
        print city_max['city'],city_max['max']

    echart=Echart(u'全国最高温度',u'3.19号')
    bar=Bar(u'最高温度',top10_max_list)
    axis=Axis('category','bottom',data=top10_city_list)
    echart.use(bar)
    echart.use(axis)
    echart.plot()
Esempio n. 15
0
def main():
    urls = ['http://www.weather.com.cn/textFC/hb.shtml',
            'http://www.weather.com.cn/textFC/db.shtml',
            'http://www.weather.com.cn/textFC/hd.shtml',
            'http://www.weather.com.cn/textFC/hz.shtml',
            'http://www.weather.com.cn/textFC/hn.shtml',
            'http://www.weather.com.cn/textFC/xb.shtml',
            'http://www.weather.com.cn/textFC/xn.shtml']
    for url in urls:
        get_temperature(url)
        time.sleep(2)

    TOP20_MIN_LIST = MINTEMP_LIST[0:20]
    TOP20_CITY_LIST = CITY_LIST[0:20]
    print(TOP20_CITY_LIST)

    echart = Echart('全国最低温度统计', 'Author: AlexZ33')
    bar = Bar('最低温度', TOP20_MIN_LIST)
    axis = Axis('category', 'bottom', data = TOP20_CITY_LIST)

    echart.use(bar)
    echart.use(axis)
    # echart.use(Legend(['℃']))
    echart.plot()
Esempio n. 16
0
def dataStatistics(request):
    chart = Echart('GDP', 'This is a fake chart')
    chart.use(Bar('China', [2, 3, 4, 5]))
    chart.use(Legend(['GDP']))
    chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan', 'Feb']))
    return render(request, 'dataStatistics.html', locals())
Esempio n. 17
0
from echarts import Echart, Legend, Bar, Axis

bars = "[['2015-10-16', 18.4, 18.58, 18.33, 18.79, 67.00, 1, 0.04, 0.11, 0.09], ['2015-10-19', 18.56, 18.25, 18.19, 18.56, 55.00, 0, -0.00, 0.08, 0.09], ['2015-10-20', 18.3, 18.22, 18.05, 18.41, 37.00, 0, 0.01, 0.09, 0.09], ['2015-10-21', 18.18, 18.69, 18.02, 18.98, 89.00, 0, 0.03, 0.10, 0.08], ['2015-10-22', 18.42, 18.29, 18.22, 18.48, 43.00, 0, -0.06, 0.05, 0.08], ['2015-10-23', 18.26, 18.19, 18.08, 18.36, 46.00, 0, -0.10, 0.03, 0.09], ['2015-10-26', 18.33, 18.07, 17.98, 18.35, 65.00, 0, -0.15, 0.03, 0.10], ['2015-10-27', 18.08, 18.04, 17.88, 18.13, 37.00, 0, -0.19, 0.03, 0.12], ['2015-10-28', 17.96, 17.86, 17.82, 17.99, 35.00, 0, -0.24, 0.03, 0.15], ['2015-10-29', 17.85, 17.81, 17.8, 17.93, 27.00, 0, -0.24, 0.06, 0.18], ['2015-10-30', 17.79, 17.93, 17.78, 18.08, 43.00, 0, -0.22, 0.11, 0.22], ['2015-11-02', 17.78, 17.83, 17.78, 18.04, 27.00, 0, -0.20, 0.15, 0.25], ['2015-11-03', 17.84, 17.9, 17.84, 18.06, 34.00, 0, -0.12, 0.22, 0.28], ['2015-11-04', 17.97, 18.36, 17.85, 18.39, 62.00, 0, -0.00, 0.30, 0.30], ['2015-11-05', 18.3, 18.57, 18.18, 19.08, 177.00, 0, 0.07, 0.33, 0.30], ['2015-11-06', 18.53, 18.68, 18.3, 18.71, 95.00, 0, 0.12, 0.35, 0.29], ['2015-11-09', 18.75, 19.08, 18.75, 19.98, 202.00, 1, 0.16, 0.35, 0.27], ['2015-11-10', 18.85, 18.64, 18.56, 18.99, 85.00, 0, 0.09, 0.29, 0.25], ['2015-11-11', 18.64, 18.44, 18.31, 18.64, 50.00, 0, 0.06, 0.27, 0.23], ['2015-11-12', 18.55, 18.27, 18.17, 18.57, 43.00, 0, 0.05, 0.25, 0.23], ['2015-11-13', 18.13, 18.14, 18.09, 18.34, 35.00, 0, 0.05, 0.24, 0.22], ['2015-11-16', 18.01, 18.1, 17.93, 18.17, 34.00, 0, 0.07, 0.25, 0.21], ['2015-11-17', 18.2, 18.14, 18.08, 18.45, 58.00, 0, 0.11, 0.25, 0.20], ['2015-11-18', 18.23, 18.16, 18.0, 18.45, 47.00, 0, 0.13, 0.25, 0.19], ['2015-11-19', 18.08, 18.2, 18.05, 18.25, 32.00, 0, 0.15, 0.24, 0.17], ['2015-11-20', 18.15, 18.15, 18.11, 18.29, 36.00, 0, 0.13, 0.21, 0.15], ['2015-11-23', 18.16, 18.19, 18.12, 18.34, 47.00, 0, 0.11, 0.18, 0.13], ['2015-11-24', 18.23, 17.88, 17.7, 18.23, 62.00, 0, 0.03, 0.13, 0.11], ['2015-11-25', 17.85, 17.73, 17.56, 17.85, 66.00, 0, -0.03, 0.09, 0.11], ['2015-11-26', 17.79, 17.53, 17.5, 17.92, 63.00, 0, -0.10, 0.06, 0.11], ['2015-11-27', 17.51, 17.04, 16.9, 17.51, 67.00, 0, -0.16, 0.05, 0.13], ['2015-11-30', 17.07, 17.2, 16.98, 17.32, 55.00, 0, -0.12, 0.09, 0.15], ['2015-12-01', 17.28, 17.11, 16.91, 17.28, 39.00, 0, -0.09, 0.12, 0.16], ['2015-12-02', 17.13, 17.91, 17.05, 17.99, 102.00, 0, -0.01, 0.17, 0.18], ['2015-12-03', 17.8, 17.78, 17.61, 17.98, 71.00, 0, -0.09, 0.14, 0.18], ['2015-12-04', 17.6, 17.25, 17.13, 17.69, 51.00, 0, -0.18, 0.10, 0.19], ['2015-12-07', 17.2, 17.39, 17.15, 17.45, 43.00, 0, -0.19, 0.12, 0.22], ['2015-12-08', 17.3, 17.42, 17.18, 17.62, 45.00, 0, -0.23, 0.13, 0.24], ['2015-12-09', 17.33, 17.39, 17.32, 17.59, 44.00, 0, -0.29, 0.13, 0.28], ['2015-12-10', 17.39, 17.26, 17.21, 17.65, 44.00, 0, -0.37, 0.13, 0.32], ['2015-12-11', 17.23, 16.92, 16.66, 17.26, 114.00, 1, -0.44, 0.15, 0.37], ['2015-12-14', 16.75, 17.06, 16.5, 17.09, 94.00, 0, -0.44, 0.21, 0.44], ['2015-12-15', 17.03, 17.03, 16.9, 17.06, 46.00, 0, -0.44, 0.28, 0.50], ['2015-12-16', 17.08, 16.96, 16.87, 17.09, 30.00, 0, -0.40, 0.36, 0.56], ['2015-12-17', 17.0, 17.1, 16.95, 17.12, 50.00, 0, -0.30, 0.47, 0.62], ['2015-12-18', 17.09, 17.52, 17.04, 18.06, 156.00, 0, -0.14, 0.59, 0.66], ['2015-12-21', 17.43, 18.23, 17.35, 18.45, 152.00, 1, 0.02, 0.69, 0.68], ['2015-12-22', 18.14, 18.27, 18.06, 18.32, 94.00, 0, 0.08, 0.72, 0.68], ['2015-12-23', 18.28, 18.19, 18.17, 18.71, 108.00, 0, 0.13, 0.73, 0.67], ['2015-12-24', 18.18, 18.14, 18.01, 18.31, 37.00, 0, 0.19, 0.74, 0.65], ['2015-12-25', 18.22, 18.33, 18.2, 18.36, 48.00, 0, 0.26, 0.75, 0.62], ['2015-12-28', 18.35, 17.84, 17.8, 18.39, 48.00, 0, 0.27, 0.72, 0.59], ['2015-12-29', 17.83, 17.94, 17.71, 17.97, 36.00, 0, 0.36, 0.73, 0.55], ['2015-12-30', 17.9, 18.26, 17.55, 18.3, 71.00, 1, 0.43, 0.71, 0.50], ['2015-12-31', 18.12, 17.99, 17.91, 18.33, 72.00, 0, 0.40, 0.63, 0.43], ['2016-01-04', 17.91, 17.28, 17.16, 17.95, 37.00, 1, 0.34, 0.55, 0.38], ['2016-01-05', 17.17, 17.23, 17.0, 17.55, 51.00, 0, 0.37, 0.51, 0.33], ['2016-01-06', 17.2, 17.31, 17.06, 17.33, 31.00, 0, 0.37, 0.46, 0.28], ['2016-01-07', 17.15, 16.67, 16.51, 17.15, 19.00, 0, 0.30, 0.37, 0.22], ['2016-01-08', 16.8, 16.81, 16.61, 17.06, 60.00, 0, 0.29, 0.32, 0.18], ['2016-01-11', 16.68, 16.04, 16.0, 16.68, 65.00, 0, 0.20, 0.24, 0.14], ['2016-01-12', 16.03, 15.98, 15.88, 16.25, 46.00, 0, 0.20, 0.21, 0.11], ['2016-01-13', 16.21, 15.87, 15.78, 16.21, 57.00, 0, 0.20, 0.18, 0.08], ['2016-01-14', 15.55, 15.89, 15.52, 15.96, 42.00, 0, 0.20, 0.16, 0.05], ['2016-01-15', 15.87, 15.48, 15.45, 15.92, 34.00, 1, 0.17, 0.11, 0.02], ['2016-01-18', 15.39, 15.42, 15.36, 15.7, 26.00, 0, 0.21, 0.10, -0.00], ['2016-01-19', 15.58, 15.71, 15.35, 15.77, 38.00, 0, 0.25, 0.09, -0.03], ['2016-01-20', 15.56, 15.52, 15.24, 15.68, 38.00, 0, 0.23, 0.05, -0.07], ['2016-01-21', 15.41, 15.3, 15.28, 15.68, 35.00, 0, 0.21, 0.00, -0.10], ['2016-01-22', 15.48, 15.28, 15.13, 15.49, 30.00, 0, 0.21, -0.02, -0.13], ['2016-01-25', 15.29, 15.48, 15.2, 15.49, 21.00, 0, 0.20, -0.06, -0.16], ['2016-01-26', 15.33, 14.86, 14.78, 15.39, 30.00, 0, 0.12, -0.13, -0.19], ['2016-01-27', 14.96, 15.0, 14.84, 15.22, 51.00, 0, 0.13, -0.14, -0.20], ['2016-01-28', 14.96, 14.72, 14.62, 15.06, 25.00, 0, 0.10, -0.17, -0.22], ['2016-01-29', 14.75, 14.99, 14.62, 15.08, 36.00, 0, 0.13, -0.17, -0.24], ['2016-02-01', 14.98, 14.72, 14.48, 15.18, 27.00, 0, 0.10, -0.21, -0.26], ['2016-02-02', 14.65, 14.85, 14.65, 14.95, 18.00, 0, 0.11, -0.21, -0.27], ['2016-02-03', 14.72, 14.67, 14.55, 14.8, 23.00, 0, 0.10, -0.24, -0.29], ['2016-02-04', 14.79, 14.88, 14.69, 14.93, 22.00, 0, 0.13, -0.24, -0.30], ['2016-02-05', 14.9, 14.86, 14.78, 14.93, 16.00, 0, 0.12, -0.26, -0.32], ['2016-02-15', 14.5, 14.66, 14.47, 14.82, 19.00, 0, 0.11, -0.28, -0.34], ['2016-02-16', 14.77, 14.94, 14.72, 15.05, 26.00, 0, 0.14, -0.28, -0.35], ['2016-02-17', 14.95, 15.03, 14.88, 15.07, 38.00, 0, 0.12, -0.31, -0.37], ['2016-02-18', 14.95, 14.9, 14.87, 15.06, 28.00, 0, 0.07, -0.35, -0.39], ['2016-02-19', 14.9, 14.75, 14.68, 14.94, 22.00, 0, 0.03, -0.38, -0.40], ['2016-02-22', 14.88, 15.01, 14.79, 15.11, 38.00, 1, 0.01, -0.40, -0.40], ['2016-02-23', 15.01, 14.83, 14.72, 15.01, 24.00, 0, -0.09, -0.45, -0.40], ['2016-02-24', 14.75, 14.81, 14.67, 14.87, 21.00, 0, -0.17, -0.48, -0.39], ['2016-02-25', 14.81, 14.25, 14.21, 14.81, 51.00, 1, -0.27, -0.50, -0.37], ['2016-02-26', 14.35, 14.45, 14.28, 14.57, 28.00, 0, -0.26, -0.46, -0.33], ['2016-02-29', 14.43, 14.56, 14.04, 14.6, 48.00, 0, -0.25, -0.41, -0.29], ['2016-03-01', 14.56, 14.65, 14.36, 14.78, 32.00, 0, -0.21, -0.36, -0.25], ['2016-03-02', 14.79, 14.96, 14.72, 14.97, 60.00, 0, -0.13, -0.29, -0.22], ['2016-03-03', 14.95, 15.15, 14.91, 15.19, 53.00, 1, -0.05, -0.23, -0.21], ['2016-03-04', 15.14, 15.97, 15.02, 16.02, 164.00, 1, 0.06, -0.17, -0.20], ['2016-03-07', 15.9, 15.78, 15.65, 16.0, 41.00, 0, 0.04, -0.19, -0.21], ['2016-03-08', 15.78, 15.96, 15.21, 15.99, 45.00, 0, 0.05, -0.19, -0.21], ['2016-03-09', 15.73, 16.05, 15.41, 16.08, 74.00, 0, 0.03, -0.20, -0.22], ['2016-03-10', 15.82, 15.66, 15.65, 15.98, 19.00, 0, -0.02, -0.23, -0.22], ['2016-03-11', 15.59, 15.76, 15.42, 15.78, 32.00, 0, 0.01, -0.22, -0.22], ['2016-03-14', 15.78, 15.72, 15.65, 16.04, 31.00, 0, 0.03, -0.20, -0.22], ['2016-03-15', 15.81, 15.86, 15.6, 15.99, 35.00, 0, 0.10, -0.18, -0.23], ['2016-03-16', 15.88, 16.42, 15.79, 16.45, 123.00, 0, 0.17, -0.16, -0.24], ['2016-03-17', 16.39, 16.23, 16.11, 16.4, 46.00, 0, 0.14, -0.20, -0.26], ['2016-03-18', 16.39, 16.17, 16.04, 16.4, 59.00, 0, 0.13, -0.22, -0.28], ['2016-03-21', 16.21, 16.22, 16.11, 16.44, 50.00, 0, 0.12, -0.24, -0.30], ['2016-03-22', 16.27, 16.19, 16.16, 16.42, 33.00, 0, 0.10, -0.27, -0.32], ['2016-03-23', 16.26, 16.18, 16.18, 16.29, 19.00, 0, 0.08, -0.30, -0.33], ['2016-03-24', 16.18, 16.11, 16.01, 16.23, 23.00, 0, 0.04, -0.33, -0.35], ['2016-03-25', 16.12, 16.13, 16.1, 16.2, 15.00, 0, 0.00, -0.35, -0.35], ['2016-03-28', 16.15, 15.85, 15.81, 16.2, 22.00, 0, -0.06, -0.38, -0.35], ['2016-03-29', 15.9, 15.79, 15.76, 16.05, 19.00, 0, -0.06, -0.37, -0.34], ['2016-03-30', 15.79, 16.24, 15.78, 16.3, 29.00, 0, -0.03, -0.35, -0.33], ['2016-03-31', 16.3, 16.09, 16.02, 16.35, 25.00, 0, -0.07, -0.37, -0.33], ['2016-04-01', 16.18, 16.27, 15.98, 16.3, 38.00, 0, -0.08, -0.36, -0.32], ['2016-04-05', 16.13, 16.34, 16.07, 16.37, 39.00, 0, -0.13, -0.37, -0.31], ['2016-04-06', 16.21, 16.26, 16.19, 16.35, 30.00, 0, -0.20, -0.39, -0.29], ['2016-04-07', 16.32, 16.1, 16.05, 16.35, 29.00, 1, -0.26, -0.39, -0.26], ['2016-04-08', 16.0, 16.16, 15.98, 16.21, 22.00, 0, -0.28, -0.37, -0.23], ['2016-04-11', 16.16, 16.31, 16.15, 16.57, 31.00, 0, -0.30, -0.33, -0.19], ['2016-04-12', 16.41, 16.29, 16.12, 16.41, 17.00, 0, -0.31, -0.30, -0.14], ['2016-04-13', 16.39, 16.48, 16.0, 16.68, 40.00, 0, -0.30, -0.25, -0.10], ['2016-04-14', 16.5, 16.46, 16.37, 16.68, 22.00, 0, -0.27, -0.19, -0.06], ['2016-04-15', 16.56, 16.93, 16.46, 17.04, 58.00, 0, -0.20, -0.12, -0.02], ['2016-04-18', 16.76, 17.06, 16.72, 17.27, 50.00, 0, -0.16, -0.07, 0.01], ['2016-04-19', 17.21, 17.11, 17.02, 17.23, 30.00, 0, -0.12, -0.02, 0.03], ['2016-04-20', 17.11, 17.33, 16.8, 17.36, 78.00, 0, -0.04, 0.03, 0.05], ['2016-04-21', 17.27, 17.69, 17.17, 17.93, 79.00, 0, 0.05, 0.08, 0.06], ['2016-04-22', 17.6, 17.87, 17.56, 18.02, 55.00, 0, 0.09, 0.10, 0.05], ['2016-04-25', 17.75, 17.9, 17.41, 17.96, 39.00, 1, 0.11, 0.09, 0.04], ['2016-04-26', 17.81, 17.91, 17.6, 17.95, 39.00, 0, 0.12, 0.08, 0.02], ['2016-04-27', 17.9, 17.88, 17.81, 17.95, 25.00, 0, 0.12, 0.06, 0.00], ['2016-04-28', 17.93, 17.88, 17.67, 17.93, 28.00, 0, 0.11, 0.04, -0.01], ['2016-04-29', 17.87, 17.75, 17.73, 17.92, 19.00, 0, 0.08, 0.01, -0.03], ['2016-05-03', 17.79, 17.7, 17.56, 17.85, 35.00, 0, 0.05, -0.01, -0.04], ['2016-05-04', 17.7, 17.65, 17.59, 17.71, 24.00, 0, 0.02, -0.04, -0.05], ['2016-05-05', 17.65, 17.62, 17.46, 17.7, 20.00, 0, -0.03, -0.06, -0.05], ['2016-05-06', 17.62, 17.32, 17.3, 17.65, 29.00, 0, -0.10, -0.09, -0.05], ['2016-05-09', 17.33, 17.3, 17.21, 17.45, 23.00, 0, -0.13, -0.10, -0.03], ['2016-05-10', 17.11, 17.04, 16.98, 17.41, 28.00, 0, -0.15, -0.09, -0.01], ['2016-05-11', 17.06, 17.15, 17.06, 17.32, 20.00, 0, -0.12, -0.05, 0.01], ['2016-05-12', 17.02, 17.46, 17.02, 17.58, 26.00, 0, -0.07, -0.01, 0.03], ['2016-05-13', 17.41, 17.57, 17.34, 17.62, 23.00, 0, -0.06, 0.01, 0.03], ['2016-05-16', 17.55, 17.5, 17.48, 17.64, 37.00, 0, -0.06, 0.01, 0.04], ['2016-05-17', 17.49, 17.48, 17.39, 17.53, 13.00, 0, -0.03, 0.03, 0.05], ['2016-05-18', 17.41, 17.82, 17.39, 17.87, 46.00, 0, 0.01, 0.06, 0.06], ['2016-05-19', 17.74, 17.81, 17.67, 17.86, 17.00, 0, -0.01, 0.05, 0.05], ['2016-05-20', 17.76, 17.88, 17.7, 17.93, 14.00, 0, -0.03, 0.04, 0.06], ['2016-05-23', 17.88, 17.52, 17.48, 17.97, 16.00, 0, -0.09, 0.02, 0.06], ['2016-05-24', 17.51, 17.33, 17.32, 17.51, 8.00, 0, -0.09, 0.03, 0.07], ['2016-05-25', 17.59, 17.55, 17.44, 17.59, 10.00, 0, -0.03, 0.07, 0.08], ['2016-05-26', 17.5, 17.69, 17.5, 17.8, 12.00, 0, 0.00, 0.09, 0.09], ['2016-05-27', 17.77, 17.66, 17.62, 17.77, 7.00, 0, 0.03, 0.10, 0.09], ['2016-05-30', 17.75, 17.84, 17.62, 17.87, 20.00, 0, 0.08, 0.12, 0.08], ['2016-05-31', 17.88, 18.0, 17.81, 18.03, 41.00, 0, 0.10, 0.12, 0.07], ['2016-06-01', 18.09, 17.83, 17.73, 18.09, 22.00, 0, 0.08, 0.10, 0.06], ['2016-06-02', 17.82, 17.73, 17.66, 17.88, 10.00, 0, 0.07, 0.08, 0.05], ['2016-06-03', 17.8, 17.78, 17.71, 17.83, 9.00, 0, 0.08, 0.08, 0.04], ['2016-06-06', 17.73, 17.64, 17.56, 17.83, 12.00, 0, 0.07, 0.06, 0.03], ['2016-06-07', 17.76, 17.8, 17.59, 17.87, 11.00, 0, 0.08, 0.06, 0.02], ['2016-06-08', 17.75, 17.77, 17.65, 17.84, 9.00, 0, 0.04, 0.03, 0.01], ['2016-06-13', 17.58, 17.32, 17.29, 17.79, 16.00, 0, -0.02, -0.01, 0.00], ['2016-06-14', 17.33, 17.38, 17.29, 17.5, 10.00, 0, -0.01, 0.00, 0.00], ['2016-06-15', 17.25, 17.39, 17.25, 17.46, 18.00, 0, 0.00, 0.01, 0.00], ['2016-06-16', 17.26, 17.4, 17.26, 17.46, 22.00, 0, 0.01, 0.01, 0.00], ['2016-06-17', 17.38, 17.5, 17.37, 17.67, 13.00, 0, 0.03, 0.02, 0.00], ['2016-06-20', 17.62, 17.51, 17.42, 17.63, 15.00, 0, 0.03, 0.01, -0.00], ['2016-06-21', 17.53, 17.54, 17.5, 17.7, 11.00, 0, 0.02, 0.00, -0.01], ['2016-06-22', 17.5, 17.5, 17.46, 17.6, 10.00, 0, -0.01, -0.01, -0.01], ['2016-06-23', 17.52, 17.26, 17.24, 17.53, 16.00, 0, -0.04, -0.03, -0.01], ['2016-06-24', 17.26, 17.25, 17.18, 17.38, 60.00, 0, -0.03, -0.02, -0.00], ['2016-06-27', 17.25, 17.28, 17.18, 17.33, 19.00, 0, -0.01, -0.00, 0.00], ['2016-06-28', 17.25, 17.29, 17.21, 17.32, 13.00, 0, 0.02, 0.01, 0.00], ['2016-06-29', 17.31, 17.45, 17.27, 17.49, 21.00, 0, 0.07, 0.04, 0.00], ['2016-06-30', 17.47, 17.5, 17.39, 17.55, 17.00, 0, 0.11, 0.04, -0.01], ['2016-07-01', 17.5, 17.63, 17.49, 17.66, 10.00, 0, 0.14, 0.05, -0.03], ['2016-07-04', 17.63, 17.72, 17.63, 17.92, 17.00, 0, 0.16, 0.03, -0.05], ['2016-07-05', 17.79, 17.56, 17.45, 17.79, 18.00, 0, 0.14, 0.00, -0.07], ['2016-07-06', 17.53, 17.42, 17.31, 17.54, 20.00, 0, 0.14, -0.02, -0.09], ['2016-07-07', 17.41, 17.51, 17.35, 17.52, 15.00, 0, 0.16, -0.03, -0.11], ['2016-07-08', 17.5, 17.39, 17.35, 17.51, 15.00, 0, 0.16, -0.05, -0.13], ['2016-07-11', 17.49, 17.48, 17.4, 17.55, 16.00, 0, 0.17, -0.07, -0.15], ['2016-07-12', 17.48, 17.71, 17.46, 17.75, 25.00, 0, 0.16, -0.10, -0.18], ['2016-07-13', 17.13, 17.05, 17.02, 17.39, 28.00, 0, 0.07, -0.17, -0.20], ['2016-07-14', 17.07, 17.09, 17.0, 17.16, 12.00, 0, 0.08, -0.17, -0.21], ['2016-07-15', 17.08, 17.14, 17.08, 17.17, 11.00, 0, 0.09, -0.18, -0.22], ['2016-07-18', 17.15, 17.26, 17.13, 17.49, 24.00, 0, 0.10, -0.19, -0.23], ['2016-07-19', 17.26, 17.12, 17.09, 17.33, 13.00, 0, 0.07, -0.21, -0.25], ['2016-07-20', 17.1, 17.07, 17.02, 17.14, 11.00, 0, 0.06, -0.23, -0.26], ['2016-07-21', 17.07, 17.24, 17.07, 17.27, 14.00, 0, 0.07, -0.23, -0.27], ['2016-07-22', 17.25, 17.08, 17.03, 17.25, 10.00, 0, 0.04, -0.26, -0.28], ['2016-07-25', 17.09, 17.12, 17.01, 17.18, 8.00, 0, 0.04, -0.26, -0.28], ['2016-07-26', 17.05, 17.17, 17.05, 17.2, 11.00, 0, 0.04, -0.27, -0.29], ['2016-07-27', 17.2, 17.37, 16.89, 17.38, 32.00, 0, 0.02, -0.28, -0.29], ['2016-07-28', 17.19, 17.14, 17.09, 17.29, 19.00, 0, -0.04, -0.32, -0.30], ['2016-07-29', 17.15, 17.16, 17.04, 17.23, 12.00, 0, -0.08, -0.33, -0.29], ['2016-08-01', 17.15, 17.18, 17.1, 17.24, 19.00, 0, -0.13, -0.34, -0.28], ['2016-08-02', 17.21, 17.15, 17.12, 17.25, 9.00, 0, -0.19, -0.36, -0.26], ['2016-08-03', 17.08, 17.07, 17.01, 17.16, 9.00, 0, -0.25, -0.36, -0.24], ['2016-08-04', 17.11, 17.06, 16.98, 17.12, 11.00, 1, -0.29, -0.35, -0.20], ['2016-08-05', 17.06, 17.1, 17.05, 17.15, 16.00, 0, -0.33, -0.32, -0.16], ['2016-08-08', 17.14, 17.13, 17.07, 17.15, 13.00, 0, -0.35, -0.29, -0.11], ['2016-08-09', 17.13, 17.17, 17.1, 17.2, 25.00, 0, -0.35, -0.24, -0.06], ['2016-08-10', 17.17, 17.28, 17.15, 17.29, 18.00, 0, -0.31, -0.17, -0.01], ['2016-08-11', 17.3, 17.45, 17.26, 17.87, 31.00, 0, -0.24, -0.09, 0.03], ['2016-08-12', 17.51, 17.99, 17.47, 18.0, 44.00, 0, -0.14, -0.00, 0.07], ['2016-08-15', 18.1, 18.42, 18.02, 18.99, 81.00, 0, -0.09, 0.04, 0.09], ['2016-08-16', 18.64, 18.31, 18.12, 18.87, 60.00, 0, -0.10, 0.05, 0.10], ['2016-08-17', 18.43, 18.4, 18.31, 18.68, 21.00, 0, -0.08, 0.08, 0.11], ['2016-08-18', 18.33, 18.23, 18.13, 18.65, 32.00, 0, -0.07, 0.09, 0.13], ['2016-08-19', 18.34, 18.62, 18.31, 18.75, 39.00, 0, 0.00, 0.14, 0.14], ['2016-08-22', 18.62, 18.69, 18.51, 18.8, 20.00, 0, 0.01, 0.14, 0.13], ['2016-08-23', 18.61, 18.66, 18.52, 19.0, 28.00, 0, 0.01, 0.14, 0.13], ['2016-08-24', 18.66, 18.62, 18.43, 18.7, 19.00, 0, 0.00, 0.13, 0.13], ['2016-08-25', 18.57, 18.51, 18.19, 18.64, 19.00, 0, -0.00, 0.13, 0.13], ['2016-08-26', 18.49, 18.55, 18.44, 18.6, 16.00, 0, 0.01, 0.13, 0.13], ['2016-08-29', 18.46, 18.27, 18.03, 18.48, 20.00, 0, 0.01, 0.13, 0.13], ['2016-08-30', 18.24, 18.44, 18.23, 18.52, 19.00, 0, 0.07, 0.17, 0.13], ['2016-08-31', 18.36, 18.63, 18.36, 18.76, 15.00, 0, 0.13, 0.18, 0.12], ['2016-09-01', 18.6, 18.62, 18.55, 18.78, 15.00, 0, 0.16, 0.18, 0.10], ['2016-09-02', 18.52, 18.68, 18.48, 18.72, 17.00, 0, 0.19, 0.17, 0.08], ['2016-09-05', 18.68, 18.75, 18.57, 18.82, 19.00, 0, 0.20, 0.15, 0.05], ['2016-09-06', 18.75, 18.51, 18.43, 18.78, 17.00, 0, 0.18, 0.11, 0.02], ['2016-09-07', 18.51, 18.56, 18.4, 18.62, 17.00, 0, 0.17, 0.08, -0.00], ['2016-09-08', 18.58, 18.53, 18.48, 18.63, 8.00, 0, 0.13, 0.04, -0.03], ['2016-09-09', 18.52, 18.33, 18.31, 18.57, 8.00, 0, 0.06, -0.02, -0.05], ['2016-09-12', 18.16, 17.9, 17.81, 18.18, 28.00, 0, -0.02, -0.07, -0.06], ['2016-09-13', 17.91, 17.91, 17.9, 18.08, 13.00, 0, -0.05, -0.08, -0.05], ['2016-09-14', 17.99, 17.54, 17.48, 17.99, 22.00, 0, -0.09, -0.09, -0.05], ['2016-09-19', 17.55, 17.81, 17.55, 17.88, 16.00, 0, -0.06, -0.06, -0.03], ['2016-09-20', 17.8, 17.74, 17.67, 17.85, 10.00, 0, -0.06, -0.05, -0.02], ['2016-09-21', 17.75, 17.88, 17.75, 17.95, 7.00, 0, -0.03, -0.03, -0.02], ['2016-09-22', 17.99, 17.97, 17.88, 18.17, 12.00, 0, -0.02, -0.02, -0.01], ['2016-09-23', 17.99, 17.98, 17.93, 18.09, 13.00, 0, -0.01, -0.01, -0.01], ['2016-09-26', 17.91, 18.0, 17.85, 18.09, 14.00, 0, -0.00, -0.01, -0.01], ['2016-09-27', 17.97, 18.07, 17.94, 18.1, 10.00, 0, 0.00, -0.01, -0.01], ['2016-09-28', 18.06, 17.89, 17.83, 18.06, 10.00, 0, -0.00, -0.01, -0.01], ['2016-09-29', 17.96, 18.0, 17.92, 18.07, 10.00, 0, 0.03, 0.01, -0.01], ['2016-09-30', 17.96, 18.0, 17.95, 18.1, 8.00, 0, 0.06, 0.02, -0.01], ['2016-10-10', 18.03, 18.3, 18.03, 18.38, 19.00, 0, 0.11, 0.04, -0.02], ['2016-10-11', 18.33, 18.33, 18.26, 18.49, 12.00, 0, 0.10, 0.02, -0.04], ['2016-10-12', 18.28, 18.15, 18.1, 18.31, 10.00, 0, 0.07, -0.02, -0.05], ['2016-10-13', 18.15, 18.09, 18.05, 18.21, 10.00, 0, 0.06, -0.03, -0.06], ['2016-10-14', 18.1, 18.1, 18.0, 18.15, 12.00, 0, 0.04, -0.05, -0.07], ['2016-10-17', 18.07, 17.86, 17.83, 18.1, 12.00, 0, 0.01, -0.07, -0.08], ['2016-10-18', 17.86, 17.93, 17.84, 17.99, 14.00, 0, 0.03, -0.07, -0.08], ['2016-10-19', 17.93, 17.88, 17.83, 18.05, 11.00, 0, 0.03, -0.07, -0.08], ['2016-10-20', 17.9, 17.89, 17.83, 17.98, 12.00, 0, 0.05, -0.06, -0.09], ['2016-10-21', 17.91, 17.91, 17.82, 17.93, 12.00, 0, 0.07, -0.06, -0.09], ['2016-10-24', 17.93, 18.31, 17.86, 18.42, 29.00, 0, 0.11, -0.05, -0.10], ['2016-10-25', 18.31, 18.13, 18.09, 18.46, 19.00, 0, 0.06, -0.09, -0.12], ['2016-10-26', 18.12, 17.97, 17.95, 18.15, 14.00, 0, 0.02, -0.12, -0.13], ['2016-10-27', 18.06, 17.81, 17.77, 18.06, 21.00, 0, -0.01, -0.13, -0.13], ['2016-10-28', 17.8, 17.9, 17.8, 18.05, 20.00, 0, -0.01, -0.13, -0.13], ['2016-10-31', 17.87, 17.86, 17.72, 17.96, 12.00, 0, -0.02, -0.14, -0.13], ['2016-11-01', 17.87, 17.98, 17.79, 17.99, 18.00, 0, -0.03, -0.14, -0.12], ['2016-11-02', 17.86, 17.84, 17.76, 17.94, 30.00, 0, -0.06, -0.15, -0.12], ['2016-11-03', 17.83, 17.93, 17.79, 17.97, 27.00, 0, -0.07, -0.14, -0.11], ['2016-11-04', 17.9, 17.91, 17.87, 18.0, 26.00, 0, -0.09, -0.15, -0.10], ['2016-11-07', 17.91, 17.89, 17.85, 17.93, 20.00, 0, -0.11, -0.14, -0.09], ['2016-11-08', 17.92, 17.99, 17.89, 18.06, 26.00, 0, -0.12, -0.13, -0.07], ['2016-11-09', 18.0, 17.89, 17.77, 18.08, 34.00, 0, -0.15, -0.13, -0.06], ['2016-11-10', 17.95, 18.0, 17.94, 18.11, 27.00, 0, -0.15, -0.11, -0.03], ['2016-11-11', 17.95, 18.02, 17.93, 18.08, 27.00, 0, -0.17, -0.10, -0.01], ['2016-11-14', 18.0, 18.04, 17.95, 18.25, 35.00, 0, -0.18, -0.08, 0.01], ['2016-11-15', 18.1, 18.18, 18.03, 18.24, 25.00, 0, -0.18, -0.06, 0.04], ['2016-11-16', 18.23, 18.12, 18.05, 18.29, 23.00, 0, -0.21, -0.04, 0.06], ['2016-11-17', 18.11, 18.12, 18.01, 18.14, 27.00, 0, -0.21, -0.01, 0.09], ['2016-11-18', 18.12, 18.1, 18.03, 18.16, 18.00, 0, -0.19, 0.03, 0.12], ['2016-11-21', 18.08, 18.34, 18.08, 18.68, 41.00, 0, -0.13, 0.08, 0.15], ['2016-11-22', 18.37, 18.37, 18.28, 18.49, 52.00, 0, -0.09, 0.12, 0.17], ['2016-11-23', 18.4, 18.84, 18.37, 18.9, 66.00, 0, -0.02, 0.17, 0.18], ['2016-11-24', 18.77, 18.74, 18.61, 18.97, 26.00, 0, -0.02, 0.17, 0.18], ['2016-11-25', 18.8, 18.99, 18.66, 19.02, 40.00, 0, -0.01, 0.18, 0.19], ['2016-11-28', 19.1, 18.65, 18.52, 19.2, 85.00, 0, -0.06, 0.16, 0.19], ['2016-11-29', 18.65, 18.75, 18.51, 18.76, 49.00, 0, -0.06, 0.17, 0.20], ['2016-11-30', 18.76, 18.55, 18.47, 18.82, 39.00, 0, -0.08, 0.17, 0.21], ['2016-12-01', 18.55, 18.49, 18.41, 18.64, 53.00, 0, -0.06, 0.19, 0.22], ['2016-12-02', 18.53, 18.49, 18.24, 18.54, 48.00, 0, -0.02, 0.21, 0.23], ['2016-12-05', 18.39, 18.66, 18.34, 18.67, 50.00, 0, 0.03, 0.25, 0.23], ['2016-12-06', 18.66, 18.6, 18.57, 18.78, 31.00, 0, 0.08, 0.26, 0.23], ['2016-12-07', 18.65, 18.62, 18.58, 18.71, 12.00, 0, 0.15, 0.29, 0.21], ['2016-12-08', 18.67, 18.76, 18.62, 18.88, 26.00, 0, 0.25, 0.32, 0.19], ['2016-12-09', 18.76, 19.2, 18.75, 19.34, 62.00, 0, 0.34, 0.33, 0.16], ['2016-12-12', 19.16, 19.25, 18.9, 19.65, 79.00, 1, 0.34, 0.28, 0.11], ['2016-12-13', 19.09, 18.88, 18.81, 19.2, 24.00, 0, 0.27, 0.20, 0.06], ['2016-12-14', 18.8, 18.82, 18.8, 19.14, 32.00, 0, 0.23, 0.13, 0.02], ['2016-12-15', 18.73, 18.24, 18.2, 18.73, 36.00, 0, 0.13, 0.05, -0.01], ['2016-12-16', 18.24, 18.18, 18.12, 18.4, 24.00, 0, 0.10, 0.02, -0.03], ['2016-12-19', 18.15, 18.01, 17.93, 18.18, 24.00, 0, 0.06, -0.02, -0.05], ['2016-12-20', 17.99, 17.79, 17.7, 17.99, 29.00, 1, 0.02, -0.05, -0.05], ['2016-12-21', 17.83, 17.81, 17.77, 17.98, 30.00, 0, 0.00, -0.05, -0.06], ['2016-12-22', 17.85, 17.72, 17.65, 17.85, 21.00, 0, -0.03, -0.07, -0.06], ['2016-12-23', 17.77, 17.6, 17.54, 17.77, 18.00, 0, -0.04, -0.08, -0.05], ['2016-12-26', 17.56, 17.75, 17.39, 17.77, 16.00, 0, -0.04, -0.07, -0.05], ['2016-12-27', 17.73, 17.71, 17.65, 17.82, 10.00, 0, -0.06, -0.07, -0.04], ['2016-12-28', 17.72, 17.62, 17.49, 17.77, 26.00, 0, -0.09, -0.07, -0.03], ['2016-12-29', 17.6, 17.49, 17.43, 17.62, 28.00, 0, -0.09, -0.06, -0.02], ['2016-12-30', 17.53, 17.6, 17.47, 17.61, 22.00, 0, -0.05, -0.03, -0.01], ['2017-01-03', 17.6, 17.92, 17.57, 17.98, 28.00, 1, 0.00, 0.00, 0.00]]"
chart = Echart('GDP', 'This is a fake chart')
chart.use(Bar('China', [2, 3, 4, 5]))
chart.use(Legend(['GDP']))
chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan', 'Feb']))
chart.save('/home/fubo/', 'solr.html')
# chart.plot()
Esempio n. 18
0
def test_bar():
    chart = Echart('GDP', 'This is a fake chart')
    chart.use(Bar(2014, [2, 3, 4, 5]))
    print(str(chart))
Esempio n. 19
0
        'xn.shtml'
    ]
    for area in area_list:
        city_temp(url + area)
        time.sleep(20)

    line = json.dumps(city_tem_list, ensure_ascii=False)
    with open('tem.json', 'w') as fp:
        fp.write(line.encode('utf-8'))

    with open('tem.json', 'r') as fp:
        city_tem_list = json.load(fp, encoding='utf-8')

    sort_max_list = sorted(city_tem_list,
                           lambda x, y: cmp(int(x['tem']), int(y['tem'])),
                           reverse=True)
    top10_sort_list = sort_max_list[0:10]
    top10_tem_list = []
    top10_city_list = []
    for top10_sort in top10_sort_list:
        top10_city_list.append(top10_sort['city'])
        top10_tem_list.append(top10_sort['tem'])

    echart = Echart('the order of high tem', 'SSKeng study')
    bar = Bar('the highest tem', top10_tem_list)
    axis = Axis('category', 'bottom', data=top10_city_list)
    echart.use(bar)
    echart.use(axis)
    echart.plot()
    fp.close()
Esempio n. 20
0
 def draw(self):
     chart = Echart(self.title, self.desc)
     chart.use(Bar(self.table, self.y))
     chart.use(Legend(self.title))
     chart.use(Axis('category', 'bottom', data=self.x))
     chart.plot()
Esempio n. 21
0
from echarts import Echart, Legend, Bar, Axis

chart = Echart('GDP', 'This is a fake chart')
chart.use(Bar('China', [2, 3, 4, 5, 1, 2, 3, 4, 25, 36, 27]))
chart.use(Legend(['GDP']))
chart.use(
    Axis('category',
         'bottom',
         data=[
             'Nov', 'Dec', 'Jan', 'Feb', 'March', 'April', 'Jun', 'Jul', 'Aug',
             'Sep', 'Oct'
         ]))
chart.use(Axis('value', 'left', data=range(0, 100, 10)))
chart.plot()
Esempio n. 22
0
import json
from echarts import Echart, Legend, Bar, Axis
with open(u'温度数据.json', 'r') as fr:
    data = json.load(fr, encoding='utf-8')

city_list = []
min_list = []
sorted_list = sorted(data,
                     lambda x, y: cmp(int(x['C_min']), int(y['C_min'])),
                     reverse=True)
for item in sorted_list[:20]:
    city_list.append(item[u'城市'])
    min_list.append(item['C_min'])
    #print item[u'省份'], item[u'城市'],item['C_min']
chart = Echart(u'全国TOP20温度', u'全国温度最高的前20个市')
chart.use(Bar(u'temp', min_list))
chart.use(Axis('category', 'bottom', 'map', city_list))
chart.plot()
Esempio n. 23
0
# line = 0
# for s in lines:
# 	line = line + 1
# 	if line==32:
# 		html.write('data: %s\n' % valueList)
# 	if  line==26:
# 		html.write('data: [')
# 		for str in nameList:
# 			html.write('\"%s\",' % str.encode('utf-8'))
# 		html.write(']\n')
# 	else:
# 		html.write(s)

# 用echart画图
chart = Echart(u'WeChat 好友省份分布图', 'data from xuqidong')
chart.use(Bar('China', valueList))
chart.use(Legend(['GDP']))
chart.use(Axis('category', 'left', data=nameList))
chart.plot()

# 获取好友列表
# friends = itchat.get_friends(update=True)[0:]
# 初始化计数器,有男有女,当然,有些人是不填的
male = female = other = 0
# 遍历这个列表,列表里第一位是自己,所以从"自己"之后开始计算
# 1表示男性,2女性
for i in friends[1:]:
    sex = i["Sex"]
    if sex == 1:
        male += 1
    elif sex == 2:
Esempio n. 24
0
from echarts import Echart, Legend, Bar, Axis

chart = Echart('Simple', 'Simple Data')
chart.use(Bar('INDIA',[2,3,4,5]))
chart.use(Legend(['Sampled Data']))
chart.use(Axis('category','bottom',data=['Nov','Dec','Jan','Feb']))
chart.plot()