Esempio n. 1
0
    def __init__(self, model_path, mirror=False):
        """Creates a PoseEngine with given model.
        Args:
          model_path: String, path to TF-Lite Flatbuffer file.
          mirror: Flip keypoints horizontally
        Raises:
          ValueError: An error occurred when model output is invalid.
        """
        BasicEngine.__init__(self, model_path)
        self._mirror = mirror

        self._input_tensor_shape = self.get_input_tensor_shape()
        if (self._input_tensor_shape.size != 4
                or self._input_tensor_shape[3] != 3
                or self._input_tensor_shape[0] != 1):
            raise ValueError(
                ('Image model should have input shape [1, height, width, 3]!'
                 ' This model has {}.'.format(self._input_tensor_shape)))
        _, self.image_height, self.image_width, self.image_depth = \
                                                self.get_input_tensor_shape()

        # The API returns all the output tensors flattened and concatenated. We
        # have to figure out the boundaries from the tensor shapes & sizes.
        offset = 0
        self._output_offsets = [0]
        for size in self.get_all_output_tensors_sizes():
            offset += size
            self._output_offsets.append(int(offset))
Esempio n. 2
0
    def __init__(self, model_path, mirror=False):
        BasicEngine.__init__(self, model_path)
        self._mirror = mirror

        self._input_tensor_shape = self.get_input_tensor_shape()
        _, self.image_height, self.image_width, self.image_depth = self.get_input_tensor_shape(
        )

        offset = 0
        self._output_offsets = [0]
        for size in self.get_all_output_tensors_sizes():
            offset += size
            self._output_offsets.append(offset)
Esempio n. 3
0
  def __init__(self, model_path):
    """Creates a EmbeddingEngine with given model and labels.

    Args:
      model_path: String, path to TF-Lite Flatbuffer file.

    Raises:
      ValueError: An error occurred when model output is invalid.
    """
    BasicEngine.__init__(self, model_path)
    output_tensors_sizes = self.get_all_output_tensors_sizes()
    if output_tensors_sizes.size != 1:
      raise ValueError(
          ('Dectection model should have only 1 output tensor!'
           'This model has {}.'.format(output_tensors_sizes.size)))
Esempio n. 4
0
    def __init__(self, model_path):
        """Creates a BasicEngine with given model.

    Args:
      model_path: String, path to TF-Lite Flatbuffer file.

    Raises:
      ValueError: An error occurred when the output format of model is invalid.
    """
        BasicEngine.__init__(self, model_path)
        output_tensors_sizes = self.get_all_output_tensors_sizes()
        if output_tensors_sizes.size != 1:
            raise ValueError(
                ('Classification model should have 1 output tensor only!'
                 'This model has {}.'.format(output_tensors_sizes.size)))
Esempio n. 5
0
  def __init__(self, model_path):
    """Creates a BasicEngine with given model.

    Args:
      model_path: String, path to TF-Lite Flatbuffer file.

    Raises:
      ValueError: An error occurred when the output format of model is invalid.
    """
    BasicEngine.__init__(self, model_path)
    output_tensors_sizes = self.get_all_output_tensors_sizes()
    if output_tensors_sizes.size != 1:
      raise ValueError(
          ('Classification model should have 1 output tensor only!'
           'This model has {}.'.format(output_tensors_sizes.size)))
Esempio n. 6
0
    def __init__(self, model_path, mirror=False):
        """Creates a PoseEngine with given model.

        Args:
          model_path: String, path to TF-Lite Flatbuffer file.
          mirror: Flip keypoints horizontally

        Raises:
          ValueError: An error occurred when model output is invalid.
        """
        BasicEngine.__init__(self, model_path)
        self._mirror = mirror

        self._input_tensor_shape = self.get_input_tensor_shape()
        if (self._input_tensor_shape.size != 4
                or self._input_tensor_shape[3] != 3
                or self._input_tensor_shape[0] != 1):
            raise ValueError(
                ('Image model should have input shape [1, height, width, 3]!'
                 ' This model has {}.'.format(self._input_tensor_shape)))
        _, self.image_height, self.image_width, self.image_depth = self.get_input_tensor_shape(
        )

        # The API returns all the output tensors flattened and concatenated. We
        # have to figure out the boundaries from the tensor shapes & sizes.
        offset = 0
        self._output_offsets = [0]
        for size in self.get_all_output_tensors_sizes():
            offset += int(size)
            self._output_offsets.append(offset)

        # Auto-detect stride size
        def calcStride(h, w, L):
            return int(
                (2 * h * w) /
                (math.sqrt(h**2 + 4 * h * L * w - 2 * h * w + w**2) - h - w))

        heatmap_size = self.get_output_tensor_size(4)
        print("Heatmap size: ", heatmap_size)
        self.stride = calcStride(self.image_height, self.image_width,
                                 heatmap_size)
        self.heatmap_size = (self.image_width // self.stride + 1,
                             self.image_height // self.stride + 1)

        print("Stride Guess: ", self.stride, self.heatmap_size)
Esempio n. 7
0
  def __init__(self, model_path):
    """Creates a DetectionEngine with given model.

    Args:
      model_path: String, path to TF-Lite Flatbuffer file.

    Raises:
      ValueError: An error occurred when model output is invalid.
    """
    BasicEngine.__init__(self, model_path)
    output_tensors_sizes = self.get_all_output_tensors_sizes()
    if output_tensors_sizes.size != 4:
      raise ValueError(
          ('Dectection model should have 4 output tensors!'
           'This model has {}.'.format(output_tensors_sizes.size)))
    self._tensor_start_index = [0]
    offset = 0
    for i in range(3):
      offset = offset + output_tensors_sizes[i]
      self._tensor_start_index.append(offset)