def main(_): dp = dirichlet_process(10.0) # The number of sticks broken is dynamic, changing across evaluations. sess = tf.Session() print(sess.run(dp)) print(sess.run(dp)) # Demo of the DirichletProcess random variable in Edward. base = Normal(0.0, 1.0) # Highly concentrated DP. alpha = 1.0 dp = DirichletProcess(alpha, base) x = dp.sample(1000) samples = sess.run(x) plt.hist(samples, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1))".format(alpha)) plt.show() # More spread out DP. alpha = 50.0 dp = DirichletProcess(alpha, base) x = dp.sample(1000) samples = sess.run(x) plt.hist(samples, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1))".format(alpha)) plt.show() # States persist across calls to sample() in a DP. alpha = 1.0 dp = DirichletProcess(alpha, base) x = dp.sample(50) y = dp.sample(75) samples_x, samples_y = sess.run([x, y]) plt.subplot(211) plt.hist(samples_x, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1)) across two calls to sample()".format(alpha)) plt.subplot(212) plt.hist(samples_y, bins=100, range=(-3.0, 3.0)) plt.show() # `theta` is the distribution indirectly returned by the DP. # Fetching theta is the same as fetching the Dirichlet process. dp = DirichletProcess(alpha, base) theta = Normal(0.0, 1.0, value=tf.cast(dp, tf.float32)) print(sess.run([dp, theta])) print(sess.run([dp, theta])) # DirichletProcess can also take in non-scalar concentrations and bases. alpha = tf.constant([0.1, 0.6, 0.4]) base = Exponential(rate=tf.ones([5, 2])) dp = DirichletProcess(alpha, base) print(dp)
def main(_): ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(1.0, 1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p)) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p))
def bayes_mult_cmd(table_file, metadata_file, formula, output_file): #metadata = _type_cast_to_float(metadata.copy()) metadata = pd.read_table(metadata_file, index_col=0) G_data = dmatrix(formula, metadata, return_type='dataframe') table = load_table(table_file) # basic filtering parameters soil_filter = lambda val, id_, md: id_ in metadata.index read_filter = lambda val, id_, md: np.sum(val) > 10 #sparse_filter = lambda val, id_, md: np.mean(val > 0) > 0.1 sample_filter = lambda val, id_, md: np.sum(val) > 1000 table = table.filter(soil_filter, axis='sample') table = table.filter(sample_filter, axis='sample') table = table.filter(read_filter, axis='observation') #table = table.filter(sparse_filter, axis='observation') print(table.shape) y_data = pd.DataFrame(np.array(table.matrix_data.todense()).T, index=table.ids(axis='sample'), columns=table.ids(axis='observation')) y_data, G_data = y_data.align(G_data, axis=0, join='inner') psi = _gram_schmidt_basis(y_data.shape[1]) G_data = G_data.values y_data = y_data.values N, D = y_data.shape p = G_data.shape[1] # number of covariates r = G_data.shape[1] # rank of covariance matrix psi = tf.convert_to_tensor(psi, dtype=tf.float32) n = tf.convert_to_tensor(y_data.sum(axis=1), dtype=tf.float32) # hack to get multinomial working def _sample_n(self, n=1, seed=None): # define Python function which returns samples as a Numpy array def np_sample(p, n): return multinomial.rvs(p=p, n=n, random_state=seed).astype(np.float32) # wrap python function as tensorflow op val = tf.py_func(np_sample, [self.probs, n], [tf.float32])[0] # set shape from unknown shape batch_event_shape = self.batch_shape.concatenate(self.event_shape) shape = tf.concat( [tf.expand_dims(n, 0), tf.convert_to_tensor(batch_event_shape)], 0) val = tf.reshape(val, shape) return val Multinomial._sample_n = _sample_n # dummy variable for gradient G = tf.placeholder(tf.float32, [N, p]) b = Exponential(rate=1.0) B = Normal(loc=tf.zeros([p, D-1]), scale=tf.ones([p, D-1]) ) # Factorization of covariance matrix # http://edwardlib.org/tutorials/klqp l = Exponential(rate=1.0) L = Normal(loc=tf.zeros([p, D-1]), scale=tf.ones([p, D-1]) ) z = Normal(loc=tf.zeros([N, p]), scale=tf.ones([N, p])) # Cholesky trick to get multivariate normal v = tf.matmul(G, B) + tf.matmul(z, L) # get clr transformed values eta = tf.matmul(v, psi) Y = Multinomial(total_count=n, logits=eta) T = 100000 # the number of mixin samples from MCMC sampling qb = PointMass(params=tf.Variable(tf.random_normal([]))) qB = PointMass(params=tf.Variable(tf.random_normal([p, D-1]))) qz = Empirical(params=tf.Variable(tf.random_normal([T, N, p]))) ql = PointMass(params=tf.Variable(tf.random_normal([]))) qL = PointMass(params=tf.Variable(tf.random_normal([p, D-1]))) # Imputation inference_z = ed.SGLD( {z: qz}, data={G: G_data, Y: y_data, B: qB, L: qL} ) # Maximization inference_BL = ed.MAP( {B: qB, L: qL, b: qb, l: ql}, data={G: G_data, Y: y_data, z: qz} ) inference_z.initialize(step_size=1e-10) inference_BL.initialize(n_iter=1000) sess = ed.get_session() saver = tf.train.Saver() tf.global_variables_initializer().run() for i in range(inference_BL.n_iter): inference_z.update() # e-step # will need to compute the expectation of z info_dict = inference_BL.update() # m-step inference_BL.print_progress(info_dict) save_path = saver.save(sess, output_file) print("Model saved in file: %s" % save_path) pickle.dump({'qB': sess.run(qB.mean()), 'qL': sess.run(qL.mean()), 'qz': sess.run(qz.mean())}, open(output_file + '.params.pickle', 'wb') )
qi_mu = tf.Variable(tf.random_normal([])) qi_sigma = tf.nn.softplus(tf.Variable(tf.random_normal([]))) qi = Normal(mu=qi_mu, sigma=qi_sigma) #qw_mu = tf.expand_dims(tf.convert_to_tensor(beta0[0].astype(np.float32)),1) qw_mu = tf.Variable(tf.random_normal([D,1])) qw_sigma = tf.nn.softplus(tf.Variable(tf.random_normal([D,1]))) qw = Normal(mu=qw_mu, sigma=qw_sigma) qb_mu = tf.Variable(tf.random_normal([Db,1])) qb_sigma = tf.nn.softplus(tf.Variable(tf.random_normal([Db,1]))) qb = Normal(mu=qb_mu, sigma=qb_sigma) eps = tf.nn.softplus(tf.Variable(tf.random_normal([]))) qeps = Exponential(lam=eps) zs_wn = {'beta': qw, 'b': qb, 'Intercept': qi, 'eps': qeps} Xnew = ed.placeholder(tf.float32, shape=(None, D)) Znew = ed.placeholder(tf.float32, shape=(None, Db)) ynew = ed.placeholder(tf.float32, shape=(None)) data = {'X': Xnew, 'y': ynew, 'Z': Znew} model_wn = MixedModel_wn(lik_std=0.1,prior_std=100.0) sess = ed.get_session() inference = ed.MFVI(zs_wn, data, model_wn) #inference.initialize()
def _test(lam, n): x = Exponential(lam=lam) val_est = get_dims(x.sample(n)) val_true = n + get_dims(lam) assert val_est == val_true
We build a random variable whose size depends on a sample from another random variable. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import tensorflow as tf from edward.models import Exponential, Dirichlet, Gamma ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(alpha=1.0, beta=1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(lam=0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(alpha=tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p.value())) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p.value())) # [ 0.12836078 0.23335715 0.63828212]
samples = sess.run(x) plt.hist(samples, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1))".format(alpha)) plt.show() # States persist across calls to sample() in a DP. alpha = 1.0 dp = DirichletProcess(alpha, base) x = dp.sample(50) y = dp.sample(75) samples_x, samples_y = sess.run([x, y]) plt.subplot(211) plt.hist(samples_x, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1)) across two calls to sample()".format(alpha)) plt.subplot(212) plt.hist(samples_y, bins=100, range=(-3.0, 3.0)) plt.show() # ``theta`` is the distribution indirectly returned by the DP. # Fetching theta is the same as fetching the Dirichlet process. dp = DirichletProcess(alpha, base) theta = Normal(0.0, 1.0, value=tf.cast(dp, tf.float32)) print(sess.run([dp, theta])) print(sess.run([dp, theta])) # DirichletProcess can also take in non-scalar concentrations and bases. alpha = tf.constant([0.1, 0.6, 0.4]) base = Exponential(lam=tf.ones([5, 2])) dp = DirichletProcess(alpha, base) print(dp)
from edward.models import Normal, Exponential import tensorflow as tf # 都是RandomVariable衍生出来 # 一元分布 Normal(loc=tf.constant(0.0), scale=tf.constant(1.0)) Normal(loc=tf.zeros(5), scale=tf.ones(5)) Exponential(rate=tf.ones([2, 3])) # 多元分布 from edward.models import Dirichlet, MultivariateNormalTriL K = 3 Dirichlet(concentration=tf.constant([0.1] * K)) # K为Dirichlet分布 MultivariateNormalTriL(loc=tf.zeros([5, K]), scale_tril=tf.ones([5, K, K])) # loc的最后一位表示维数 MultivariateNormalTriL(loc=tf.zeros([2, 5, K]), scale_tril=tf.ones([2, 5, K, K])) # 每个RandomVariable有方法log_prob(),mean(),sample(),且与计算图上的一个张量对应 # 可以支持诸多运算 from edward.models import Normal x = Normal(loc=tf.zeros(10), scale=tf.ones(10)) y = tf.constant(5.0) x + y, x - y, x * y, x / y tf.tanh(x * y) tf.gather(x, 2) print(x[2]) # 有向图模型 from edward.models import Bernoulli, Beta
samples = sess.run(x) plt.hist(samples, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1))".format(alpha)) plt.show() # States persist across calls to sample() in a DP. alpha = 1.0 dp = DirichletProcess(alpha, base) x = dp.sample(50) y = dp.sample(75) samples_x, samples_y = sess.run([x, y]) plt.subplot(211) plt.hist(samples_x, bins=100, range=(-3.0, 3.0)) plt.title("DP({0}, N(0, 1)) across two calls to sample()".format(alpha)) plt.subplot(212) plt.hist(samples_y, bins=100, range=(-3.0, 3.0)) plt.show() # ``theta`` is the distribution indirectly returned by the DP. # Fetching theta is the same as fetching the Dirichlet process. dp = DirichletProcess(alpha, base) theta = Normal(0.0, 1.0, value=tf.cast(dp, tf.float32)) print(sess.run([dp, theta])) print(sess.run([dp, theta])) # DirichletProcess can also take in non-scalar concentrations and bases. alpha = tf.constant([0.1, 0.6, 0.4]) base = Exponential(rate=tf.ones([5, 2])) dp = DirichletProcess(alpha, base) print(dp)
import edward as ed from tensorflow.python import debug as tf_debug from edward.models import Normal, Poisson, PointMass, Exponential, Uniform, Empirical count_data = np.loadtxt("data/txtdata.csv") n_count_data = len(count_data) sess = tf.Session() alpha_f = 1.0 / count_data.mean() with tf.name_scope('model'): alpha = tf.Variable(alpha_f, name="alpha", dtype=tf.float32) # init lambda_1 = Exponential(alpha, name="lambda1") lambda_2 = Exponential(alpha, name="lambda2") tau = Uniform(low=0.0, high=float(n_count_data - 1), name="tau") idx = np.arange(n_count_data) lambda_ = tf.where( tau >= idx, tf.ones(shape=[ n_count_data, ], dtype=tf.float32) * lambda_1, tf.ones(shape=[ n_count_data, ], dtype=tf.float32) * lambda_2) # error z = Poisson(lambda_, value=tf.Variable(tf.ones(n_count_data)), name="poi")