Esempio n. 1
0
def test_game_reinforce():
    core.init()
    sender = core.ReinforceWrapper(ToyAgent())
    receiver = core.ReinforceDeterministicWrapper(Receiver())

    loss = lambda sender_input, message, receiver_input, receiver_output, labels, aux_input: (
        -(receiver_output == labels).float(),
        {},
    )

    game = core.SymbolGameReinforce(sender,
                                    receiver,
                                    loss,
                                    sender_entropy_coeff=1e-1,
                                    receiver_entropy_coeff=0.0)
    optimizer = torch.optim.Adagrad(game.parameters(), lr=1e-1)

    data = Dataset()
    trainer = core.Trainer(game,
                           optimizer,
                           train_data=data,
                           validation_data=None)
    trainer.train(5000)

    assert (sender.agent.fc1.weight.t().argmax(
        dim=1).cpu() == BATCH_Y).all(), str(sender.agent.fc1.weight)
Esempio n. 2
0
def main(params):
    opts = get_params(params)
    print(json.dumps(vars(opts)))

    device = opts.device

    train_loader = OneHotLoader(n_bits=opts.n_bits,
                                bits_s=opts.bits_s,
                                bits_r=opts.bits_r,
                                batch_size=opts.batch_size,
                                batches_per_epoch=opts.n_examples_per_epoch/opts.batch_size)

    test_loader = UniformLoader(n_bits=opts.n_bits, bits_s=opts.bits_s, bits_r=opts.bits_r)
    test_loader.batch = [x.to(device) for x in test_loader.batch]

    sender = Sender(n_bits=opts.n_bits, n_hidden=opts.sender_hidden,
                    vocab_size=opts.vocab_size)

    if opts.mode == 'gs':
        receiver = Receiver(n_bits=opts.n_bits, n_hidden=opts.receiver_hidden, vocab_size=opts.vocab_size)
        sender = core.GumbelSoftmaxWrapper(agent=sender, temperature=opts.temperature)
        game = core.SymbolGameGS(sender, receiver, diff_loss)
    elif opts.mode == 'rf':
        sender = core.ReinforceWrapper(agent=sender)
        receiver = Receiver(n_bits=opts.n_bits, n_hidden=opts.receiver_hidden, vocab_size=opts.vocab_size)
        receiver = core.ReinforceDeterministicWrapper(agent=receiver)
        game = core.SymbolGameReinforce(sender, receiver, diff_loss, sender_entropy_coeff=opts.sender_entropy_coeff)
    elif opts.mode == 'non_diff':
        sender = core.ReinforceWrapper(agent=sender)
        receiver = ReinforcedReceiver(n_bits=opts.n_bits, n_hidden=opts.receiver_hidden, vocab_size=opts.vocab_size)
        game = core.SymbolGameReinforce(sender, receiver, non_diff_loss,
                                        sender_entropy_coeff=opts.sender_entropy_coeff,
                                        receiver_entropy_coeff=opts.receiver_entropy_coeff)

    else:
        assert False, 'Unknown training mode'

    optimizer = torch.optim.Adam(
        [
            dict(params=sender.parameters(), lr=opts.sender_lr),
            dict(params=receiver.parameters(), lr=opts.receiver_lr)
        ])

    loss = game.loss

    intervention = CallbackEvaluator(test_loader, device=device, is_gs=opts.mode == 'gs', loss=loss, var_length=False,
                                     input_intervention=True)

    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr)

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader, epoch_callback=intervention, as_json=True,
                           early_stopping=early_stopper)

    trainer.train(n_epochs=opts.n_epochs)

    core.close()
Esempio n. 3
0
def main(params):
    opts = get_params(params)
    print(opts)

    device = opts.device

    train_loader = OneHotLoader(n_bits=opts.n_bits,
                                bits_s=opts.bits_s,
                                bits_r=opts.bits_r,
                                batch_size=opts.batch_size,
                                batches_per_epoch=opts.n_examples_per_epoch /
                                opts.batch_size)

    test_loader = UniformLoader(n_bits=opts.n_bits,
                                bits_s=opts.bits_s,
                                bits_r=opts.bits_r)
    test_loader.batch = [x.to(device) for x in test_loader.batch]

    if not opts.variable_length:
        sender = Sender(n_bits=opts.n_bits,
                        n_hidden=opts.sender_hidden,
                        vocab_size=opts.vocab_size)
        if opts.mode == 'gs':
            sender = core.GumbelSoftmaxWrapper(agent=sender,
                                               temperature=opts.temperature)
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            receiver = core.SymbolReceiverWrapper(
                receiver,
                vocab_size=opts.vocab_size,
                agent_input_size=opts.receiver_hidden)
            game = core.SymbolGameGS(sender, receiver, diff_loss)
        elif opts.mode == 'rf':
            sender = core.ReinforceWrapper(agent=sender)
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            receiver = core.SymbolReceiverWrapper(
                receiver,
                vocab_size=opts.vocab_size,
                agent_input_size=opts.receiver_hidden)
            receiver = core.ReinforceDeterministicWrapper(agent=receiver)
            game = core.SymbolGameReinforce(
                sender,
                receiver,
                diff_loss,
                sender_entropy_coeff=opts.sender_entropy_coeff)
        elif opts.mode == 'non_diff':
            sender = core.ReinforceWrapper(agent=sender)
            receiver = ReinforcedReceiver(n_bits=opts.n_bits,
                                          n_hidden=opts.receiver_hidden)
            receiver = core.SymbolReceiverWrapper(
                receiver,
                vocab_size=opts.vocab_size,
                agent_input_size=opts.receiver_hidden)

            game = core.SymbolGameReinforce(
                sender,
                receiver,
                non_diff_loss,
                sender_entropy_coeff=opts.sender_entropy_coeff,
                receiver_entropy_coeff=opts.receiver_entropy_coeff)
    else:
        if opts.mode != 'rf':
            print('Only mode=rf is supported atm')
            opts.mode = 'rf'

        if opts.sender_cell == 'transformer':
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            sender = Sender(
                n_bits=opts.n_bits,
                n_hidden=opts.sender_hidden,
                vocab_size=opts.sender_hidden)  # TODO: not really vocab
            sender = core.TransformerSenderReinforce(
                agent=sender,
                vocab_size=opts.vocab_size,
                embed_dim=opts.sender_emb,
                max_len=opts.max_len,
                num_layers=1,
                num_heads=1,
                hidden_size=opts.sender_hidden)
        else:
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            sender = Sender(
                n_bits=opts.n_bits,
                n_hidden=opts.sender_hidden,
                vocab_size=opts.sender_hidden)  # TODO: not really vocab
            sender = core.RnnSenderReinforce(agent=sender,
                                             vocab_size=opts.vocab_size,
                                             embed_dim=opts.sender_emb,
                                             hidden_size=opts.sender_hidden,
                                             max_len=opts.max_len,
                                             cell=opts.sender_cell)

        if opts.receiver_cell == 'transformer':
            receiver = Receiver(n_bits=opts.n_bits, n_hidden=opts.receiver_emb)
            receiver = core.TransformerReceiverDeterministic(
                receiver,
                opts.vocab_size,
                opts.max_len,
                opts.receiver_emb,
                num_heads=1,
                hidden_size=opts.receiver_hidden,
                num_layers=1)
        else:
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            receiver = core.RnnReceiverDeterministic(receiver,
                                                     opts.vocab_size,
                                                     opts.receiver_emb,
                                                     opts.receiver_hidden,
                                                     cell=opts.receiver_cell)

            game = core.SenderReceiverRnnGS(sender, receiver, diff_loss)

        game = core.SenderReceiverRnnReinforce(
            sender,
            receiver,
            diff_loss,
            sender_entropy_coeff=opts.sender_entropy_coeff,
            receiver_entropy_coeff=opts.receiver_entropy_coeff)

    optimizer = torch.optim.Adam([
        dict(params=sender.parameters(), lr=opts.sender_lr),
        dict(params=receiver.parameters(), lr=opts.receiver_lr)
    ])

    loss = game.loss

    intervention = CallbackEvaluator(test_loader,
                                     device=device,
                                     is_gs=opts.mode == 'gs',
                                     loss=loss,
                                     var_length=opts.variable_length,
                                     input_intervention=True)

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=[
                               core.ConsoleLogger(as_json=True),
                               EarlyStopperAccuracy(opts.early_stopping_thr),
                               intervention
                           ])

    trainer.train(n_epochs=opts.n_epochs)

    core.close()