def test_stores_value_in_queue(self) -> None: """Test the ``put`` method puts data into the underlying connected queue""" # Create a node with an output connector output = Output() input = Input() output.connect(input) test_val = 'test_val' output.put(test_val) self.assertEqual(input._queue.get(), test_val)
class MockNode(MockObject, nodes.Node): """A ``Node`` subclass that implements placeholder functions for abstract methods""" def __init__(self, name: Optional[str] = None) -> None: self.output = Output() self.input = Input() super().__init__(name) def action(self) -> None: # pragma: no cover """Placeholder function to satisfy requirements of abstract parent""" for x in self.input.iter_get(): self.output.put(x)
class MockSource(MockObject, nodes.Source): """A ``Source`` subclass that implements placeholder functions for abstract methods""" def __init__(self, load_data: list = None, name: Optional[str] = None) -> None: self.output = Output() self.load_data = load_data or [] super().__init__(name) def action(self) -> None: """Placeholder function to satisfy requirements of abstract parent""" for x in self.load_data: self.output.put(x)
class LoadPlasticcCadence(Source): """Pipeline node for loading PLAsTICC cadence data from disk Connectors: output: Emits a pipeline packet decorated with the snid, simulation parameters, and cadence """ def __init__( self, plasticc_dao: PLAsTICC, iter_lim: int = float('inf'), override_zp: float = 30, num_processes: int = 1 ) -> None: """Source node for loading PLAsTICC cadence data from disk This node can only be run using a single process. This can be the main process (``num_processes=0``) or a single forked process (``num_processes=1``.) Args: plasticc_dao: A PLAsTICC data access object iter_lim: Exit after loading the given number of light-curves override_zp: Overwrite the zero-point used by plasticc with this number num_processes: Number of processes to allocate to the node (must be 0 or 1 for this node) """ if num_processes not in (0, 1): raise RuntimeError('Number of processes for ``LoadPlasticcCadence`` must be 0 or 1.') self.cadence = plasticc_dao self.iter_lim = iter_lim self.override_zp = override_zp # Node connectors self.output = Output('Loading Cadence Output') super().__init__(num_processes=num_processes) def action(self) -> None: """Load PLAsTICC cadence data from disk""" for snid, params, cadence in self.cadence.iter_cadence(iter_lim=self.iter_lim): cadence.zp = np.full_like(cadence.zp, self.override_zp) self.output.put(PipelinePacket(snid, params, cadence))
class SimulateLightCurves(Node): """Pipeline node for simulating light-curves based on PLAsTICC cadences Connectors: input: A Pipeline Packet success_output: Emits pipeline packets successfully decorated with a simulated light-curve failure_output: Emits pipeline packets for cases where the simulation procedure failed """ def __init__( self, sn_model: SNModel, catalog: VariableCatalog = None, num_processes: int = 1, add_scatter: bool = True, fixed_snr: Optional[float] = None, abs_mb: float = const.betoule_abs_mb, cosmo: Cosmology = const.betoule_cosmo ) -> None: """Fit light-curves using multiple processes and combine results into an output file Args: sn_model: Model to use when simulating light-curves catalog: Optional reference start catalog to calibrate simulated flux values to num_processes: Number of processes to allocate to the node abs_mb: The absolute B-band magnitude of the simulated SNe cosmo: Cosmology to assume in the simulation """ self.sim_model = copy(sn_model) self.catalog = catalog self.add_scatter = add_scatter self.fixed_snr = fixed_snr self.abs_mb = abs_mb self.cosmo = cosmo # Node connectors self.input = Input('Simulated Cadence') self.success_output = Output('Simulation Success') self.failure_output = Output('Simulation Failure') super().__init__(num_processes=num_processes) def simulate_lc(self, params: Dict[str, float], cadence: ObservedCadence) -> LightCurve: """Duplicate a plastic light-curve using the simulation model Args: params: The simulation parameters to use with ``self.model`` cadence: The observed cadence of the returned light-curve """ # Set model parameters and scale the source brightness to the desired intrinsic brightness model_for_sim = copy(self.sim_model) model_for_sim.update({p: v for p, v in params.items() if p in model_for_sim.param_names}) model_for_sim.set_source_peakabsmag(self.abs_mb, 'standard::b', 'AB', cosmo=self.cosmo) # Simulate the light-curve. Make sure to include model parameters as meta data duplicated = model_for_sim.simulate_lc(cadence, scatter=self.add_scatter, fixed_snr=self.fixed_snr) # Rescale the light-curve using the reference star catalog if provided if self.catalog is not None: duplicated = self.catalog.calibrate_lc(duplicated, ra=params['ra'], dec=params['dec']) return duplicated def action(self) -> None: """Simulate light-curves with atmospheric effects""" for packet in self.input.iter_get(): try: packet.light_curve = self.simulate_lc( packet.sim_params, packet.cadence ) except Exception as excep: packet.message = f'{self.__class__.__name__}: {repr(excep)}' self.failure_output.put(packet) else: self.success_output.put(packet)
class FitLightCurves(Node): """Pipeline node for fitting simulated light-curves Connectors: input: A Pipeline Packet success_output: Emits pipeline packets with successful fit results failure_output: Emits pipeline packets for cases where the fitting procedure failed """ def __init__( self, sn_model: SNModel, vparams: List[str], bounds: Dict = None, num_processes: int = 1 ) -> None: """Fit light-curves using multiple processes and combine results into an output file Args: sn_model: Model to use when fitting light-curves vparams: List of parameter names to vary in the fit bounds: Bounds to impose on ``fit_model`` parameters when fitting light-curves num_processes: Number of processes to allocate to the node """ self.sn_model = sn_model self.vparams = vparams self.bounds = bounds # Node Connectors self.input = Input('Simulated Light-Curve') self.success_output = Output('Fitting Success') self.failure_output = Output('Fitting Failure') super(FitLightCurves, self).__init__(num_processes=num_processes) def fit_lc(self, light_curve: LightCurve, initial_guess: Dict[str, float]) -> Tuple[SNFitResult, SNModel]: """Fit the given light-curve Args: light_curve: The light-curve to fit initial_guess: Parameters to use as the initial guess in the chi-squared minimization Returns: - The optimization result - A copy of the model with parameter values set to minimize the chi-square """ # Use the true light-curve parameters as the initial guess model = copy(self.sn_model) model.update({k: v for k, v in initial_guess.items() if k in self.sn_model.param_names}) return model.fit_lc( light_curve, self.vparams, bounds=self.bounds, guess_t0=False, guess_amplitude=False, guess_z=False) def action(self) -> None: """Fit light-curves""" for packet in self.input.iter_get(): try: packet.fit_result, packet.fitted_model = self.fit_lc(packet.light_curve, packet.sim_params) packet.covariance = packet.fit_result.salt_covariance_linear() except Exception as excep: packet.message = f'{self.__class__.__name__}: {repr(excep)}' self.failure_output.put(packet) else: packet.message = f'{self.__class__.__name__}: {packet.fit_result.message}' self.success_output.put(packet)