Esempio n. 1
0
def test_decode_shape_crf(generate_batch):
    unary, _, lengths = generate_batch
    h = unary.size(2)
    crf = CRF(h, batch_first=False)
    paths, scores = crf.decode(unary, lengths)
    assert scores.shape == torch.Size([unary.size(1)])
    assert paths.shape == torch.Size([unary.size(0), unary.size(1)])
Esempio n. 2
0
def test_score_sentence_batch_stable(generate_examples_and_batch):
    i1, t1, l1, i2, t2, l2, i, t, l = generate_examples_and_batch
    h = i1.size(2)
    crf = CRF(h, batch_first=False)
    crf.transitions_p.data = torch.rand(1, h, h)
    score1 = crf.score_sentence(i1, t1, l1)
    score2 = crf.score_sentence(i2, t2, l2)
    one_x_one = torch.cat([score1, score2], dim=0)
    batched = crf.score_sentence(i, t, l)
    np.testing.assert_allclose(one_x_one.detach().numpy(), batched.detach().numpy())
Esempio n. 3
0
def test_forward_batch_stable(generate_examples_and_batch):
    i1, _, l1, i2, _, l2, i, _, l = generate_examples_and_batch
    h = i1.size(2)
    crf = CRF(h, batch_first=False)
    crf.transitions_p.data = torch.rand(1, h, h)
    fw1 = crf.forward((i1, l1))
    fw2 = crf.forward((i2, l2))
    one_x_one = torch.cat([fw1, fw2], dim=0)
    batched = crf.forward((i, l))
    np.testing.assert_allclose(one_x_one.detach().numpy(), batched.detach().numpy())
Esempio n. 4
0
def test_viterbi_score_equals_sentence_score(generate_batch):
    """Test that the scores from viterbi decoding are the same scores that you get when looking up those returned paths."""
    unary, _, lengths = generate_batch
    h = unary.size(2)
    trans = torch.rand(h, h)
    crf = CRF(h)

    p, viterbi_scores = Viterbi(Offsets.GO, Offsets.EOS)(unary, crf.transitions, lengths)
    gold_scores = crf.score_sentence(unary, p, lengths)
    np.testing.assert_allclose(viterbi_scores.detach().numpy(), gold_scores.detach().numpy(), rtol=1e-6)
Esempio n. 5
0
def test_neg_log_loss_batch_stable(generate_examples_and_batch):
   i1, t1, l1, i2, t2, l2, i, t, l = generate_examples_and_batch
   h = i1.size(2)
   crf = CRF(h, batch_first=False)
   crf.transitions_p.data = torch.rand(1, h, h)
   nll1 = crf.neg_log_loss(i1, t1, l1)
   nll2 = crf.neg_log_loss(i2, t2, l2)
   one_x_one = (nll1 + nll2) / 2
   batched = crf.neg_log_loss(i, t, l)
   np.testing.assert_allclose(one_x_one.detach().numpy(), batched.detach().numpy())
Esempio n. 6
0
def test_decode_batch_stable(generate_examples_and_batch):
   i1, _, l1, i2, _, l2, i, _, l = generate_examples_and_batch
   h = i1.size(2)
   crf = CRF(h, batch_first=False)
   crf.transitions_p.data = torch.rand(1, h, h)
   p1, s1 = crf.decode(i1, l1)
   p2, s2 = crf.decode(i2, l2)
   pad = torch.zeros(p1.size(0) - p2.size(0), 1, dtype=torch.long)
   one_x_one_p = torch.cat([p1, torch.cat([p2, pad], dim=0)], dim=1)
   one_x_one_s = torch.cat([s1, s2], dim=0)
   batched_p, batched_s =  crf.decode(i, l)
   np.testing.assert_allclose(one_x_one_s.detach().numpy(), batched_s.detach().numpy())
   for p1, p2 in zip(one_x_one_p, batched_p):
       np.testing.assert_allclose(p1.detach().numpy(), p2.detach().numpy())
Esempio n. 7
0
def test_forward(generate_batch):
    unary, _, lengths = generate_batch
    h = unary.size(2)
    crf = CRF(h, batch_first=False)
    trans = torch.rand(h, h)
    crf.transitions_p.data = trans.unsqueeze(0)
    forward = crf.forward((unary, lengths))

    new_trans = build_trans(trans)
    unary = unary.transpose(0, 1)
    scores = []
    for u, l in zip(unary, lengths):
        emiss = build_emission(u[:l])
        scores.append(explicit_forward(emiss, new_trans, Offsets.GO, Offsets.EOS))
    gold_scores = np.array(scores)
    np.testing.assert_allclose(forward.detach().numpy(), gold_scores, rtol=1e-6)
Esempio n. 8
0
def test_mask_is_applied():
    h = np.random.randint(22, 41)
    loc = np.random.randint(h)
    constraint = torch.zeros(h, h, dtype=torch.uint8)
    constraint[Offsets.GO, loc] = 1
    crf = CRF(h, constraint_mask=constraint)
    t = crf.transitions.detach().numpy()
    assert t[0, Offsets.GO, loc] == -1e4
Esempio n. 9
0
def test_score_sentence(generate_batch):
    unary, tags, lengths = generate_batch
    h = unary.size(2)
    crf = CRF(h, batch_first=False)
    trans = torch.rand(h, h)
    crf.transitions_p.data = trans.unsqueeze(0)
    sentence_score = crf.score_sentence(unary, tags, lengths)

    new_trans = build_trans(trans)
    unary = unary.transpose(0, 1)
    tags = tags.transpose(0, 1)
    scores = []
    for u, t, l in zip(unary, tags, lengths):
        emiss = build_emission(u[:l])
        golds = t[:l].tolist()
        scores.append(explicit_score_gold(emiss, new_trans, golds, Offsets.GO, Offsets.EOS))
    gold_scores = np.array(scores)
    np.testing.assert_allclose(sentence_score.detach().numpy(), gold_scores, rtol=1e-6)
Esempio n. 10
0
def test_mask_same_after_update(generate_batch):
    from torch.optim import SGD

    unary, tags, lengths = generate_batch
    h = unary.size(2)
    constraint = torch.rand(h, h) < 0.5
    crf = CRF(h, constraint_mask=constraint, batch_first=False)
    opt = SGD(crf.parameters(), lr=10)
    m1 = crf.constraint_mask.numpy()
    t1 = crf.transitions_p.detach().clone().numpy()
    l = crf.neg_log_loss(unary, tags, lengths)
    l = torch.mean(l)
    l.backward()
    opt.step()
    m2 = crf.constraint_mask.numpy()
    t2 = crf.transitions_p.detach().numpy()
    np.testing.assert_allclose(m1, m2)
    with pytest.raises(AssertionError):
        np.testing.assert_allclose(t1, t2)
Esempio n. 11
0
def test_mask_not_applied():
    h = np.random.randint(22, 41)
    crf = CRF(h)
    t = crf.transitions.detach().numpy()
    assert t[0, Offsets.GO, np.random.randint(h)] != -1e4
Esempio n. 12
0
def test_forward_shape(generate_batch):
    unary, _, lengths = generate_batch
    h = unary.size(2)
    crf = CRF(h, batch_first=False)
    fwd = crf.forward((unary, lengths))
    assert fwd.shape == torch.Size([unary.size(1)])
Esempio n. 13
0
def test_score_sentence_shape(generate_batch):
    unary, tags, lengths = generate_batch
    h = unary.size(2)
    crf = CRF(h, batch_first=False)
    score = crf.score_sentence(unary, tags, lengths)
    assert score.shape == torch.Size([unary.size(1)])