Esempio n. 1
0
def test_attr_range_facet_filter__existing_post_filter(range_qf, compiler):
    sq = range_qf.apply(SearchQuery().post_filter(Field('status').term(0)), {})
    assert_search_query(
        sq,
        SearchQuery().aggs({
            'qf.attr_range.filter':
            agg.Filter(Term('status', 0),
                       aggs={
                           'qf.attr_range':
                           agg.Terms(script=Script(
                               'doc[params.field].value >>> 32',
                               lang='painless',
                               params={
                                   'field': 'attr.float',
                               }),
                                     size=100),
                       }),
        }).post_filter(Term('status', 0)), compiler)
Esempio n. 2
0
 def _get_filter_expression(self, attr_id: int,
                            values) -> t.Optional[Expression]:
     w = [
         merge_attr_value_int(attr_id, v)
         for v in self._parse_values(values, 'exact')
     ]
     if not w:
         return None
     if len(w) == 1:
         return Term(self.field, w[0])
     return Terms(self.field, w)
Esempio n. 3
0
def test_attr_bool_simple_filter(compiler):
    qf = QueryFilter()
    qf.add_filter(
        AttrBoolSimpleFilter('attr_bool', Field('attr.bool'), alias='a'))

    sq = qf.apply(SearchQuery(), {})
    assert sq.to_dict(compiler=compiler) == {}

    sq = qf.apply(SearchQuery(), {'a1': 'true'})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().filter(
        Term('attr.bool', 0x3)).to_dict(compiler=compiler))

    sq = qf.apply(SearchQuery(), {'a1': 'True'})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().filter(
        Term('attr.bool', 0x3)).to_dict(compiler=compiler))

    sq = qf.apply(SearchQuery(), {'a1': [True]})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().filter(
        Term('attr.bool', 0x3)).to_dict(compiler=compiler))

    sq = qf.apply(SearchQuery(), {'a1': 'False'})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().filter(
        Term('attr.bool', 0x2)).to_dict(compiler=compiler))

    sq = qf.apply(SearchQuery(), {'a1': ['true', 'false']})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().filter(
        Terms('attr.bool', [0x3, 0x2])).to_dict(compiler=compiler))

    sq = qf.apply(SearchQuery(), {'a1': ['true', 'false'], 'a2': 'false'})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().filter(
        Terms('attr.bool',
              [0x3, 0x2])).filter(Term('attr.bool',
                                       0x4)).to_dict(compiler=compiler))

    sq = qf.apply(SearchQuery(), {'a2147483648': '1'})
    assert sq.to_dict(compiler=compiler) == {}

    sq = qf.apply(SearchQuery(), {'a1': 'TRUE'})
    assert sq.to_dict(compiler=compiler) == {}
Esempio n. 4
0
    def test_search_query_compile(self):
        f = DynamicDocument.fields

        sq = SearchQuery()
        self.assert_expression(sq, {})
        self.assertEqual(collect_doc_classes(sq), set())

        sq = SearchQuery(Term(f.user, 'kimchy')).limit(10).offset(0)
        self.assert_expression(
            sq,
            {
                "from": 0,
                "size": 10,
                "query": {
                    "term": {"user": "******"}
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = SearchQuery(Term(f.user, 'kimchy')).filter(f.age >= 16)
        self.assert_expression(
            sq,
            {
                "query": {
                    "filtered": {
                        "query": {
                            "term": {"user": "******"}
                        },
                        "filter": {
                            "range": {
                                "age": {"gte": 16}
                            }
                        }
                    }
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = SearchQuery(Term(f.user, 'kimchy'), _compiler=QueryCompiled20).filter(f.age >= 16)
        self.assert_expression(
            sq,
            {
                "query": {
                    "bool": {
                        "must": {
                            "term": {"user": "******"}
                        },
                        "filter": {
                            "range": {
                                "age": {"gte": 16}
                            }
                        }
                    }
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery(Term(f.user, 'kimchy'))
            .query(f.user != 'kimchy')
        )
        self.assert_expression(
            sq,
            {
                "query": {
                    "bool": {
                        "must_not": [
                            {
                                "term": {"user": "******"}
                            }
                        ]
                    }
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery(Term(f.user, 'kimchy'))
            .query(None)
        )
        self.assert_expression(sq, {})
        self.assertEqual(collect_doc_classes(sq), set())

        sq = (
            SearchQuery(Term(f.user, 'kimchy'))
            .filter(f.age >= 16)
            .filter(f.lang == 'English')
        )
        self.assert_expression(
            sq,
            {
                "query": {
                    "filtered": {
                        "query": {
                            "term": {"user": "******"}
                        },
                        "filter": {
                            "bool": {
                                "must": [
                                    {
                                        "range": {
                                            "age": {"gte": 16}
                                        }
                                    },
                                    {
                                        "term": {
                                            "lang": "English"
                                        }
                                    }
                                ]
                            }
                        }
                    }
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery()
            .order_by(
                f.opinion_rating.desc(missing='_last'),
                f.opinion_count.desc(),
                f.id
            )
        )
        self.assert_expression(
            sq,
            {
                "sort": [
                    {
                        "opinion_rating": {
                            "order": "desc",
                            "missing": "_last"
                        }
                    },
                    {
                        "opinion_count": "desc"
                    },
                    "id"
                ]
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery()
            .order_by(
                f.opinion_rating.desc(missing='_last'),
                f.opinion_count.desc(),
                f.id
            )
            .order_by(None)
            .order_by(None)
        )
        self.assert_expression(sq, {})
        self.assertEqual(collect_doc_classes(sq), set())

        sq = SearchQuery().source(f.name, f.company)
        self.assert_expression(
            sq,
            {
                "_source": ["name", "company"]
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = SearchQuery().source(exclude=[f.name, f.company])
        self.assert_expression(
            sq,
            {
                "_source": {
                    "exclude": ["name", "company"]
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery()
            .source(
                include=[f.obj1.wildcard('*'), f.obj2.wildcard('*')],
                # FIXME: f.wildcard('*')
                exclude=DynamicDocument.wildcard('*').description
            )
        )
        self.assert_expression(
            sq,
            {
                "_source": {
                    "include": ["obj1.*", "obj2.*"],
                    "exclude": "*.description"
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery()
            .source(None)
            .source(f.name, f.company)
            .source(None)
        )
        self.assert_expression(sq, {})
        self.assertEqual(collect_doc_classes(sq), set())

        sq = (
            SearchQuery()
            .source(f.name, f.company)
            .source(False)
        )
        self.assert_expression(
            sq,
            {
                "_source": False
            }
        )
        self.assertEqual(collect_doc_classes(sq), set())

        sq = (
            SearchQuery()
            .source(True)
        )
        self.assert_expression(
            sq,
            {
                "_source": True
            }
        )
        self.assertEqual(collect_doc_classes(sq), set())

        sq = SearchQuery().fields(f.name, f.company)
        self.assert_expression(
            sq,
            {
                "fields": ["name", "company"]
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery()
            .fields(True)
        )
        self.assert_expression(
            sq,
            {
                "fields": '*'
            }
        )
        self.assertEqual(collect_doc_classes(sq), set())

        sq = (
            SearchQuery()
            .fields(None)
            .fields(f.name, f.company)
            .fields(None)
        )
        self.assert_expression(sq, {})
        self.assertEqual(collect_doc_classes(sq), set())

        sq = (
            SearchQuery()
            .fields(f.name, f.company)
            .fields(False)
        )
        self.assert_expression(
            sq,
            {
                "fields": []
            }
        )
        self.assertEqual(collect_doc_classes(sq), set())

        self.assert_expression(
            SearchQuery()
            .function_score({'random_score': {"seed": 1234}}),
            {
                "query": {
                    "function_score": {
                        "functions": [
                            {
                                "random_score": {"seed": 1234}
                            }
                        ],
                    }
                }
            }
        )

        sq = (
            SearchQuery(MultiMatch('Iphone 6', fields=[f.name, f.description]))
            .filter(f.status == 0)
            .function_score(None)
            .function_score({'_score': {"seed": 1234}})
            .function_score(None)
            .function_score({'field_value_factor': {'field': f.popularity,
                                                    'factor': 1.2,
                                                    'modifier': 'sqrt'}},
                            boost_mode='sum')
            .function_score({'boost_factor': 3,
                             'filter': f.region == 12})
        )
        self.assert_expression(
            sq,
            {
                "query": {
                    "filtered": {
                        "query": {
                            "function_score": {
                                "query": {
                                    "multi_match": {
                                        "query": "Iphone 6",
                                        "fields": ["name", "description"]
                                    }
                                },
                                "functions": [
                                    {
                                        "field_value_factor": {
                                            "field": "popularity",
                                            "factor": 1.2,
                                            "modifier": "sqrt"
                                        }
                                    },
                                    {
                                        "filter": {
                                            "term": {"region": 12}
                                        },
                                        "boost_factor": 3
                                    }
                                ],
                                "boost_mode": "sum"
                            }
                        },
                        "filter": {
                            "term": {"status": 0}
                        }
                    }
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {DynamicDocument})

        sq = (
            SearchQuery()
            .filter(f.status == 0)
            .boost_score(
                {'filter': f.discount_percent >= 10, 'weight': 1000},
                {'filter': f.discount_percent >= 50, 'weight': 2000},
                {'filter': f.presence == 'available', 'weight': 10000},
            )
        )
        self.assert_expression(
            sq,
            {
                "query": {
                    "filtered": {
                        "query": {
                            "function_score": {
                                "functions": [
                                    {
                                        "filter": {"range": {"discount_percent": {"gte": 10}}},
                                        "weight": 1000
                                    },
                                    {
                                        "filter": {"range": {"discount_percent": {"gte": 50}}},
                                        "weight": 2000
                                    },
                                    {
                                        "filter": {"term": {"presence": "available"}},
                                        "weight": 10000
                                    },
                                ],
                                "score_mode": "sum",
                                "boost_mode": "sum"
                            }
                        },
                        "filter": {
                            "term": {"status": 0}
                        }
                    }
                }
            }
        )

        sq = (
            SearchQuery(f.name.match('test'))
            .filter(f.status == 0)
            .function_score(
                {'field_value_factor': {'field': f.popularity}},
            )
            .boost_score(
                {'filter': f.discount_percent >= 10, 'weight': 100},
            )
            .boost_score(None)
            .boost_score(
                {'filter': f.discount_percent >= 10, 'weight': 1000},
                {'filter': f.discount_percent >= 50, 'weight': 2000},
                score_mode='max',
            )
        )
        self.assert_expression(
            sq,
            {
                "query": {
                    "filtered": {
                        "query": {
                            "function_score": {
                                "query": {
                                    "function_score": {
                                        "query": {
                                            "match": {
                                                "name": "test"
                                            }
                                        },
                                        "functions": [
                                            {
                                                "field_value_factor": {
                                                    "field": "popularity"
                                                }
                                            }
                                        ]
                                    }
                                },
                                "functions": [
                                    {
                                        "filter": {"range": {"discount_percent": {"gte": 10}}},
                                        "weight": 1000
                                    },
                                    {
                                        "filter": {"range": {"discount_percent": {"gte": 50}}},
                                        "weight": 2000
                                    },
                                ],
                                "score_mode": "max",
                                "boost_mode": "sum"
                            }
                        },
                        "filter": {
                            "term": {"status": 0}
                        }
                    }
                }
            }
        )

        sq = (
            SearchQuery()
            .rescore(
                QueryRescorer(
                    self.index.t.field1.match('the quick brown', type='phrase', slop=2)
                )
            )
            .rescore(None)
            .rescore(
                QueryRescorer(
                    self.index.t.field1.match('the quick brown fox', type='phrase', slop=2),
                    query_weight=0.7,
                    rescore_query_weight=1.2
                ),
                window_size=100,
            )
            .rescore(
                QueryRescorer(
                    FunctionScore(script_score={'script': "log10(doc['numeric'].value + 2)"}),
                    score_mode='multiply'
                ),
                window_size=10,
            )
        )
        self.assert_expression(
            sq,
            {
                "rescore": [
                    {
                        "window_size": 100,
                        "query": {
                            "rescore_query": {
                                "match": {
                                    "field1": {
                                        "query": "the quick brown fox",
                                        "type": "phrase",
                                        "slop": 2
                                    }
                                }
                            },
                            "query_weight": 0.7,
                            "rescore_query_weight": 1.2
                        }
                    },
                    {
                        "window_size": 10,
                        "query": {
                            "score_mode": "multiply",
                            "rescore_query": {
                                "function_score": {
                                    "script_score": {
                                        "script": "log10(doc['numeric'].value + 2)"
                                    }
                                }
                            }
                        }
                    }
                ]
            }
        )
        self.assertEqual(collect_doc_classes(sq), {self.index.t})

        sq = SearchQuery().post_filter(self.index.shirt.color == 'red')
        self.assert_expression(
            sq,
            {
                "post_filter": {
                    "term": {"color": "red"}
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {self.index.shirt})

        sq = (
            SearchQuery()
            .filter(self.index.shirt.brand == 'gucci')
            .post_filter(self.index.shirt.color == 'red')
            .post_filter(self.index.shirt.model == 't-shirt')
        )
        self.assert_expression(
            sq,
            {
                "query": {
                    "filtered": {
                        "filter": {
                            "term": {"brand": "gucci"}
                        }
                    }
                },
                "post_filter": {
                    "bool": {
                        "must": [
                            {"term": {"color": "red"}},
                            {"term": {"model": "t-shirt"}}
                        ]
                    }
                }
            }
        )
        self.assertEqual(collect_doc_classes(sq), {self.index.shirt})
Esempio n. 5
0
    def test_aggs(self):
        f = DynamicDocument.fields

        a = agg.AggExpression()
        self.assertRaises(NotImplementedError, a.build_agg_result, {})

        a = agg.Avg(f.price)
        self.assert_expression(
            a,
            {
                "avg": {"field": "price"}
            }
        )
        res = a.build_agg_result({
            'value': 75.3
        })
        self.assertAlmostEqual(res.value, 75.3)
        res = a.build_agg_result({
            'value': None
        })
        self.assertIs(res.value, None)

        aa = a.clone()
        self.assertIsNot(a, aa)
        self.assertEqual(a.__visit_name__, aa.__visit_name__)
        self.assertEqual(a.params, aa.params)

        a = agg.Min(f.price)
        self.assert_expression(
            a,
            {
                "min": {"field": "price"}
            }
        )
        res = a.build_agg_result({
            'value': 38
        })
        self.assertAlmostEqual(res.value, 38)
        res = a.build_agg_result({
            'value': 1297167619690,
            'value_as_string': '2011-02-08T12:20:19.690Z'
        })
        self.assertAlmostEqual(res.value, 1297167619690)

        a = agg.Max(f.price)
        self.assert_expression(
            a,
            {
                "max": {"field": "price"}
            }
        )
        res = a.build_agg_result({
            'value': 45693.5
        })
        self.assertAlmostEqual(res.value, 45693.5)

        a = agg.Stats(f.grade)
        self.assert_expression(
            a,
            {
                "stats": {"field": "grade"}
            }
        )
        a = a.build_agg_result(
            {
                "count": 6,
                "min": 60,
                "max": 98,
                "avg": 78.5,
                "sum": 471
            }
        )
        self.assertEqual(a.count, 6)
        self.assertEqual(a.min, 60)
        self.assertEqual(a.max, 98)
        self.assertAlmostEqual(a.avg, 78.5)
        self.assertEqual(a.sum, 471)

        a = agg.ExtendedStats(f.grade)
        self.assert_expression(
            a,
            {
                "extended_stats": {"field": "grade"}
            }
        )
        a = a.build_agg_result(
            {
                "count": 6,
                "min": 72,
                "max": 117.6,
                "avg": 94.2,
                "sum": 565.2,
                "sum_of_squares": 54551.51999999999,
                "variance": 218.2799999999976,
                "std_deviation": 14.774302013969987
            }
        )
        self.assertEqual(a.count, 6)
        self.assertEqual(a.min, 72)
        self.assertAlmostEqual(a.max, 117.6)
        self.assertAlmostEqual(a.avg, 94.2)
        self.assertAlmostEqual(a.sum, 565.2)
        self.assertAlmostEqual(a.sum_of_squares, 54551.51999999999)
        self.assertAlmostEqual(a.variance, 218.2799999999976)
        self.assertAlmostEqual(a.std_deviation, 14.774302013969987)

        percentiles_agg = agg.Percentiles(f.load_time, percents=[95, 99, 99.9])
        self.assert_expression(
            percentiles_agg,
            {
                "percentiles": {
                    "field": "load_time",
                    "percents": [95, 99, 99.9]
                }
            }
        )
        a = percentiles_agg.build_agg_result(
            {
                "values": {
                    "95.0": 60,
                    "99.0": 150,
                    "99.9": 153,
                }
            }
        )
        self.assertEqual(
            a.values,
            [(95.0, 60), (99.0, 150), (99.9, 153)],
        )
        self.assertEqual(a.get_value(95), 60)
        self.assertEqual(a.get_value(95.0), 60)
        self.assertEqual(a.get_value(99), 150)
        self.assertEqual(a.get_value(99.0), 150)
        self.assertEqual(a.get_value(99.9), 153)
        a = percentiles_agg.build_agg_result(
            {
                "values": {
                    "95.0": 60,
                    "95.0_as_string": "60",
                    "99.0": 150,
                    "99.0_as_string": "150",
                    "99.9": 153,
                    "99.9_as_string": "153",
                }
            }
        )
        self.assertEqual(
            a.values,
            [(95.0, 60), (99.0, 150), (99.9, 153)],
        )
        self.assertEqual(a.get_value(95), 60)
        self.assertEqual(a.get_value(95.0), 60)
        self.assertEqual(a.get_value(99), 150)
        self.assertEqual(a.get_value(99.0), 150)
        self.assertEqual(a.get_value(99.9), 153)

        percentiles_agg = agg.Percentiles(f.load_time, percents=[50])
        self.assert_expression(
            percentiles_agg,
            {
                "percentiles": {
                    "field": "load_time",
                    "percents": [50]
                }
            }
        )
        a = percentiles_agg.build_agg_result(
            {
                "values": {
                    "50.0": "NaN",
                }
            }
        )
        self.assertEqual(
            len(a.values),
            1
        )
        self.assertAlmostEqual(
            a.values[0][0],
            50.0
        )
        self.assertTrue(
            math.isnan(a.values[0][1])
        )
        self.assertTrue(math.isnan(a.get_value(50)))
        self.assertTrue(math.isnan(a.get_value(50.0)))

        ranks_agg = agg.PercentileRanks(f.load_time, values=[14.8, 30])
        self.assert_expression(
            ranks_agg,
            {
                "percentile_ranks": {
                    "field": "load_time",
                    "values": [14.8, 30.0]
                }
            }
        )
        a = ranks_agg.build_agg_result(
            {
                "values": {
                    "14.8": 12.32,
                    "30": 100,
                }
            }
        )
        self.assertEqual(
            a.values,
            [(14.8, 12.32), (30.0, 100)],
        )
        self.assertEqual(
            a.values,
            [(14.8, 12.32), (30.0, 100)],
        )
        self.assertAlmostEqual(a.get_percent(14.8), 12.32)
        self.assertAlmostEqual(a.get_percent(13.7 + 1.1), 12.32)
        self.assertAlmostEqual(a.get_percent(30), 100.0)
        self.assertAlmostEqual(a.get_percent(30.0), 100.0)
        a = ranks_agg.build_agg_result(
            {
                "values": {
                    "14.8": 12.32,
                    "14.8_as_string": "12.32",
                    "30": 100,
                    "30_as_string": "100",
                }
            }
        )
        self.assertEqual(
            a.values,
            [(14.8, 12.32), (30.0, 100)],
        )
        self.assertEqual(
            a.values,
            [(14.8, 12.32), (30.0, 100)],
        )
        self.assertAlmostEqual(a.get_percent(14.8), 12.32)
        self.assertAlmostEqual(a.get_percent(13.7 + 1.1), 12.32)
        self.assertAlmostEqual(a.get_percent(30), 100.0)
        self.assertAlmostEqual(a.get_percent(30.0), 100.0)

        a = agg.Cardinality(f.author, precision_threshold=100)
        self.assert_expression(
            a,
            {
                "cardinality": {
                    "field": "author",
                    "precision_threshold": 100
                }
            }
        )
        a = a.build_agg_result(
            {
                "value": 184
            }
        )
        self.assertEqual(a.value, 184)

        a = agg.Global()
        self.assert_expression(a, {"global": {}})
        a = a.build_agg_result(
            {"doc_count": 185}
        )
        self.assertEqual(a.doc_count, 185)

        a = agg.Filter(f.company == 1)
        self.assert_expression(a, {"filter": {"term": {"company": 1}}})
        a2 = a.clone()
        self.assertIsNot(a, a2)
        self.assert_expression(a2, {"filter": {"term": {"company": 1}}})
        a = a.build_agg_result(
            {"doc_count": 148}
        )
        self.assertEqual(a.doc_count, 148)

        a = agg.Terms(f.status)
        self.assert_expression(
            a,
            {
                "terms": {"field": "status"}
            }
        )
        a1 = a.clone()
        self.assertIsNot(a, a1)
        a = a.build_agg_result(
            {
                'buckets': [
                    {'doc_count': 7353499, 'key': 0},
                    {'doc_count': 2267139, 'key': 1},
                    {'doc_count': 1036951, 'key': 4},
                    {'doc_count': 438384, 'key': 2},
                    {'doc_count': 9594, 'key': 3},
                    {'doc_count': 46, 'key': 5}
                ]
            }
        )
        self.assertEqual(len(a.buckets), 6)
        self.assertEqual(list(iter(a)), a.buckets)
        self.assertEqual(a.buckets[0].key, 0)
        self.assertEqual(a.buckets[0].doc_count, 7353499)
        self.assertEqual(repr(a.buckets[0]), '<Bucket key=0 doc_count=7353499>')

        self.assertIs(a.buckets[0], a.get_bucket(0))
        self.assertEqual(a.buckets[1].key, 1)
        self.assertEqual(a.buckets[1].doc_count, 2267139)
        self.assertIs(a.buckets[1], a.get_bucket(1))
        self.assertEqual(repr(a.buckets[1]), '<Bucket key=1 doc_count=2267139>')

        self.assertEqual(a.buckets[2].key, 4)
        self.assertEqual(a.buckets[2].doc_count, 1036951)
        self.assertIs(a.buckets[2], a.get_bucket(4))
        self.assertEqual(repr(a.buckets[2]), '<Bucket key=4 doc_count=1036951>')

        self.assertEqual(a.buckets[3].key, 2)
        self.assertEqual(a.buckets[3].doc_count, 438384)
        self.assertIs(a.buckets[3], a.get_bucket(2))
        self.assertEqual(repr(a.buckets[3]), '<Bucket key=2 doc_count=438384>')

        self.assertEqual(a.buckets[4].key, 3)
        self.assertEqual(a.buckets[4].doc_count, 9594)
        self.assertIs(a.buckets[4], a.get_bucket(3))
        self.assertEqual(repr(a.buckets[4]), '<Bucket key=3 doc_count=9594>')

        self.assertEqual(a.buckets[5].key, 5)
        self.assertEqual(a.buckets[5].doc_count, 46)
        self.assertIs(a.buckets[5], a.get_bucket(5))
        self.assertEqual(repr(a.buckets[5]), '<Bucket key=5 doc_count=46>')

        a = agg.Terms(f.is_visible, type=Boolean)
        self.assert_expression(
            a,
            {
                "terms": {"field": "is_visible"}
            }
        )
        a = a.build_agg_result(
            {
                'buckets': [
                    {'doc_count': 7, 'key': 'T'},
                    {'doc_count': 2, 'key': 'F'},
                ]
            }
        )
        self.assertEqual(len(a.buckets), 2)
        self.assertEqual(a.buckets[0].key, True)
        self.assertEqual(a.buckets[0].doc_count, 7)
        self.assertIs(a.buckets[0], a.get_bucket(True))
        self.assertEqual(a.buckets[1].key, False)
        self.assertEqual(a.buckets[1].doc_count, 2)
        self.assertIs(a.buckets[1], a.get_bucket(False))

        a = agg.Terms(f.category, type=List(Integer))
        self.assert_expression(
            a,
            {
                "terms": {"field": "category"}
            }
        )
        a = a.build_agg_result(
            {
                'buckets': [
                    {'doc_count': 792, 'key': 28},
                    {'doc_count': 185, 'key': 3},
                ]
            }
        )
        self.assertEqual(len(a.buckets), 2)
        self.assertEqual(a.buckets[0].key, 28)
        self.assertEqual(a.buckets[0].doc_count, 792)
        self.assertIs(a.buckets[0], a.get_bucket(28))
        self.assertEqual(a.buckets[1].key, 3)
        self.assertEqual(a.buckets[1].doc_count, 185)
        self.assertIs(a.buckets[1], a.get_bucket(3))

        class ProductDocument(Document):
            is_visible = Field(Boolean)
        a = agg.Terms(ProductDocument.is_visible)
        self.assert_expression(
            a,
            {
                "terms": {"field": "is_visible"}
            }
        )
        a = a.build_agg_result(
            {
                'buckets': [
                    {'doc_count': 7, 'key': 'T'},
                    {'doc_count': 2, 'key': 'F'},
                ]
            }
        )
        self.assertEqual(len(a.buckets), 2)
        self.assertEqual(a.buckets[0].key, True)
        self.assertEqual(a.buckets[0].doc_count, 7)
        self.assertIs(a.buckets[0], a.get_bucket(True))
        self.assertEqual(a.buckets[1].key, False)
        self.assertEqual(a.buckets[1].doc_count, 2)
        self.assertIs(a.buckets[1], a.get_bucket(False))

        a = agg.SignificantTerms(f.crime_type)
        self.assert_expression(
            a,
            {
                "significant_terms": {"field": "crime_type"}
            }
        )
        a = a.build_agg_result(
            {
                "doc_count": 47347,
                "buckets" : [
                    {
                        "key": "Bicycle theft",
                        "doc_count": 3640,
                        "score": 0.371,
                        "bg_count": 66799,
                    },
                    {
                        "key": "Mobile phone theft",
                        "doc_count": 27617,
                        "score": 0.0599,
                        "bg_count": 53182,
                    }
                ]
            }
        )
        self.assertEqual(len(a.buckets), 2)
        self.assertEqual(a.buckets[0].key, 'Bicycle theft')
        self.assertEqual(a.buckets[0].doc_count, 3640)
        self.assertAlmostEqual(a.buckets[0].score, 0.371)
        self.assertEqual(a.buckets[0].bg_count, 66799)
        self.assertIs(a.buckets[0], a.get_bucket('Bicycle theft'))
        self.assertEqual(a.buckets[1].key, 'Mobile phone theft')
        self.assertEqual(a.buckets[1].doc_count, 27617)
        self.assertAlmostEqual(a.buckets[1].score, 0.0599)
        self.assertEqual(a.buckets[1].bg_count, 53182)
        self.assertIs(a.buckets[1], a.get_bucket('Mobile phone theft'))

        a = agg.Range(
            f.price,
            ranges=[{'to': 200}, {'from': 200, 'to': 1000}, {'from': 1000}],
            type=Integer,
        )
        self.assert_expression(
            a,
            {
                "range": {
                    "field": "price",
                    "ranges": [
                        {"to": 200},
                        {"from": 200, "to": 1000},
                        {"from": 1000}
                    ]
                }
            }
        )
        a1 = a.clone()
        self.assertIsNot(a1, a)
        a = a.build_agg_result(
            {
                "buckets": [
                    {
                        "to": 200,
                        "doc_count": 12
                    },
                    {
                        "from": 200,
                        "to": 1000,
                        "doc_count": 197
                    },
                    {
                        "from": 1000,
                        "doc_count": 8
                    }
                ]
            }
        )
        self.assertEqual(len(a.buckets), 3)
        self.assertEqual(a.buckets[0].doc_count, 12)
        self.assertEqual(a.buckets[1].doc_count, 197)
        self.assertEqual(a.buckets[2].doc_count, 8)

        a = agg.Filters([Term(f.body, 'error'), Term(f.body, 'warning')])
        self.assert_expression(
            a,
            {
                "filters": {
                    "filters": [
                        {"term": {"body": "error"}},
                        {"term": {"body": "warning"}}
                    ]
                }
            }
        )
        a = a.build_agg_result(
            {
                "buckets": [
                    {
                        "doc_count" : 34
                    },
                    {
                        "doc_count" : 439
                    },
                ]
            }
        )
        self.assertEqual(len(a.buckets), 2)
        self.assertIs(a.buckets[0].key, None)
        self.assertEqual(a.buckets[0].doc_count, 34)
        self.assertIs(a.buckets[1].key, None)
        self.assertEqual(a.buckets[1].doc_count, 439)
        self.assertIs(a.get_bucket(None), None)

        a = agg.Filters(Params(errors=Term(f.body, 'error'), warnings=Term(f.body, 'warning')))
        self.assert_expression(
            a,
            {
                "filters": {
                    "filters": {
                        "errors": {"term": {"body": "error"}},
                        "warnings": {"term": {"body": "warning"}}
                    }
                }
            }
        )
        a = a.build_agg_result(
            {
                "buckets": {
                    "errors": {
                        "doc_count" : 34
                    },
                    "warnings": {
                        "doc_count" : 439
                    },
                }
            }
        )
        self.assertEqual(len(a.buckets), 2)
        self.assertIs(a.buckets[0].key, 'errors')
        self.assertEqual(a.buckets[0].doc_count, 34)
        self.assertIs(a.buckets[0], a.get_bucket('errors'))
        self.assertIs(a.buckets[1].key, 'warnings')
        self.assertEqual(a.buckets[1].doc_count, 439)
        self.assertIs(a.buckets[1], a.get_bucket('warnings'))

        a = agg.Nested(f.resellers, aggs={'min_price': agg.Min(f.resellers.price)})
        self.assert_expression(
            a,
            {
                "nested": {"path": "resellers"},
                "aggregations": {
                    "min_price": {"min": {"field": "resellers.price"}}
                }
            }
        )
        a = a.build_agg_result(
            {
                "min_price": {
                    "value" : 350
                }
            }
        )
        self.assertEqual(a.get_aggregation('min_price').value, 350)

        a = agg.Nested(
            f.resellers,
            aggs={"resellers": agg.Terms(
                f.resellers.id,
                aggs={"reverse": agg.ReverseNested(
                    f.resellers,
                    aggs={"reseller_volume": agg.Sum(f.price)}
                )})})
        self.assert_expression(
            a,
            {
                "nested": {"path": "resellers"},
                "aggregations": {
                    "resellers": {
                        "terms": {"field": "resellers.id"},
                        "aggregations": {
                            "reverse": {
                                "reverse_nested": {"path": "resellers"},
                                "aggregations": {
                                    "reseller_volume": {
                                        "sum": {"field": "price"}
                                    }
                                }
                            }
                        }
                    }
                }
            }
        )
        a = a.build_agg_result(
            {
                "doc_count": 100,
                "resellers": {
                    "buckets": [
                        {
                            "key": 1122,
                            "doc_count": 48,
                            "reverse": {
                                "reseller_volume": {"value": 500100}
                            }
                        },
                        {
                            "key": 2233,
                            "doc_count": 52,
                            "reverse": {
                                "reseller_volume": {"value": 100500}
                            }
                        }
                    ]
                }
            }
        )
        self.assertEqual(
            a
            .get_aggregation("resellers")
            .buckets[1]
            .get_aggregation("reverse")
            .get_aggregation("reseller_volume")
            .value,
            100500
        )

        a = agg.Sampler(shard_size=1000, aggs={'avg_price': agg.Avg(f.price)})
        self.assert_expression(
            a,
            {
                "sampler": {"shard_size": 1000},
                "aggregations": {
                    "avg_price": {"avg": {"field": "price"}}
                }
            }
        )
        a = a.build_agg_result(
            {
                "doc_count": 1000,
                "avg_price": {
                    "value" : 750
                }
            }
        )
        self.assertEqual(a.doc_count, 1000)
        self.assertEqual(a.get_aggregation('avg_price').value, 750)
        
        # complex aggregation with sub aggregations
        a = agg.Global()
        a = a.aggs({
                'selling_type': agg.Terms(
                    f.selling_type,
                    aggs={
                        'price_avg': agg.Avg(f.price),
                        'price_min': agg.Min(f.price),
                        'price_max': agg.Max(f.price),
                        'price_hist': agg.Histogram(f.price, interval=50),
                    }
                ),
                'price_avg': agg.Avg(f.price),
            }
        )
        self.assert_expression(
            a,
            {
                "global": {},
                "aggregations": {
                    "selling_type": {
                        "terms": {"field": "selling_type"},
                        "aggregations": {
                            "price_avg": {"avg": {"field": "price"}},
                            "price_min": {"min": {"field": "price"}},
                            "price_max": {"max": {"field": "price"}},
                            "price_hist": {
                                "histogram": {
                                    "field": "price",
                                    "interval": 50,
                                    'min_doc_count': 1
                                }
                            },
                        }
                    },
                    "price_avg": {"avg": {"field": "price"}}
                }
            }
        )
        a = a.build_agg_result(
            {
                'doc_count': 100,
                'selling_type': {
                    'buckets': [
                        {
                            'key': 'retail',
                            'doc_count': 70,
                            'price_avg': {'value': 60.5},
                            'price_min': {'value': 1.1},
                            'price_max': {'value': 83.4},
                            'price_hist': {
                                'buckets': [
                                    {'key': 50, 'doc_count': 60},
                                    {'key': 100, 'doc_count': 7},
                                    {'key': 150, 'doc_count': 3},
                                ]
                            },
                        },
                        {
                            'key': 'wholesale',
                            'doc_count': 30,
                            'price_avg': {'value': 47.9},
                            'price_min': {'value': 20.1},
                            'price_max': {'value': 64.8},
                            'price_hist': {
                                'buckets': [
                                    {'key': 0, 'doc_count': 17},
                                    {'key': 50, 'doc_count': 5},
                                    {'key': 100, 'doc_count': 6},
                                    {'key': 150, 'doc_count': 2},
                                ]
                            },
                        },
                    ],
                },
                'price_avg': {'value': 56.3},
            }
        )
        self.assertEqual(a.doc_count, 100)
        type_agg = a.get_aggregation('selling_type')
        self.assertEqual(len(type_agg.buckets), 2)
        self.assertEqual(type_agg.buckets[0].key, 'retail')
        self.assertEqual(type_agg.buckets[0].doc_count, 70)
        self.assertIs(type_agg.buckets[0], type_agg.get_bucket('retail'))
        self.assertAlmostEqual(type_agg.buckets[0].get_aggregation('price_avg').value, 60.5)
        self.assertAlmostEqual(type_agg.buckets[0].get_aggregation('price_min').value, 1.1)
        self.assertAlmostEqual(type_agg.buckets[0].get_aggregation('price_max').value, 83.4)
        price_hist_agg = type_agg.buckets[0].get_aggregation('price_hist')
        self.assertEqual(price_hist_agg.buckets[0].key, 50)
        self.assertEqual(price_hist_agg.buckets[0].doc_count, 60)
        self.assertIs(price_hist_agg.buckets[0], price_hist_agg.get_bucket(50))
        self.assertEqual(price_hist_agg.buckets[1].key, 100)
        self.assertEqual(price_hist_agg.buckets[1].doc_count, 7)
        self.assertIs(price_hist_agg.buckets[1], price_hist_agg.get_bucket(100))
        self.assertEqual(price_hist_agg.buckets[2].key, 150)
        self.assertEqual(price_hist_agg.buckets[2].doc_count, 3)
        self.assertIs(price_hist_agg.buckets[2], price_hist_agg.get_bucket(150))
        self.assertEqual(len(price_hist_agg.buckets), 3)
        self.assertEqual(type_agg.buckets[1].key, 'wholesale')
        self.assertEqual(type_agg.buckets[1].doc_count, 30)
        self.assertIs(type_agg.buckets[1], type_agg.get_bucket('wholesale'))
        self.assertAlmostEqual(type_agg.buckets[1].get_aggregation('price_avg').value, 47.9)
        self.assertAlmostEqual(type_agg.buckets[1].get_aggregation('price_min').value, 20.1)
        self.assertAlmostEqual(type_agg.buckets[1].get_aggregation('price_max').value, 64.8)
        price_hist_agg = type_agg.buckets[1].get_aggregation('price_hist')
        self.assertEqual(len(price_hist_agg.buckets), 4)
        self.assertEqual(price_hist_agg.buckets[0].key, 0)
        self.assertEqual(price_hist_agg.buckets[0].doc_count, 17)
        self.assertIs(price_hist_agg.buckets[0], price_hist_agg.get_bucket(0))
        self.assertEqual(price_hist_agg.buckets[1].key, 50)
        self.assertEqual(price_hist_agg.buckets[1].doc_count, 5)
        self.assertIs(price_hist_agg.buckets[1], price_hist_agg.get_bucket(50))
        self.assertEqual(price_hist_agg.buckets[2].key, 100)
        self.assertEqual(price_hist_agg.buckets[2].doc_count, 6)
        self.assertIs(price_hist_agg.buckets[2], price_hist_agg.get_bucket(100))
        self.assertEqual(price_hist_agg.buckets[3].key, 150)
        self.assertEqual(price_hist_agg.buckets[3].doc_count, 2)
        self.assertIs(price_hist_agg.buckets[3], price_hist_agg.get_bucket(150))
        self.assertEqual(a.get_aggregation('price_avg').value, 56.3)

        class QuestionDocument(DynamicDocument):
            pass
        
        class PaperDocument(DynamicDocument):
            pass
        
        question_mapper = Mock(
            return_value={
                '602679': Mock(id=602679, type='question'),
                '602678': Mock(id=602678, type='question'),
            }
        )
        paper_mapper = Mock(return_value={'602672': Mock(id=602672, type='paper')})
        top_hits_agg = agg.Terms(
            f.tags,
            size=3,
            aggs={
                'top_tags_hits': agg.TopHits(
                    size=1,
                    sort=f.last_activity_date.desc(),
                    _source={'include': f.title},
                    instance_mapper={
                        QuestionDocument: question_mapper, PaperDocument: paper_mapper
                    },
                )
            }
        )
        self.assert_expression(
            top_hits_agg,
            {
                "terms": {
                    "field": "tags",
                    "size": 3
                },
                "aggregations": {
                    "top_tags_hits": {
                        "top_hits": {
                            "sort": {
                                "last_activity_date": "desc"
                            },
                            "_source": {
                                "include": "title"
                            },
                            "size" : 1
                        }
                    }
                }
            }
        )
        a = top_hits_agg.build_agg_result(
            {
                "buckets": [
                    {
                        "key": "windows-7",
                        "doc_count": 25365,
                        "top_tags_hits": {
                            "hits": {
                                "total": 25365,
                                "max_score": 1,
                                "hits": [
                                    {
                                        "_index": "stack",
                                        "_type": "question",
                                        "_id": "602679",
                                        "_score": 1,
                                        "_source": {
                                            "title": "Windows port opening"
                                        },
                                        "sort": [
                                            1370143231177
                                        ]
                                    }
                                ]
                            }
                        }
                    },
                    {
                        "key": "linux",
                        "doc_count": 18342,
                        "top_tags_hits": {
                            "hits": {
                                "total": 18342,
                                "max_score": 1,
                                "hits": [
                                    {
                                        "_index": "stack",
                                        "_type": "paper",
                                        "_id": "602672",
                                        "_score": 1,
                                        "_source": {
                                            "title": "Ubuntu RFID Screensaver lock-unlock"
                                        },
                                        "sort": [
                                            1370143379747
                                        ]
                                    }
                                ]
                            }
                        }
                    },
                    {
                        "key": "windows",
                        "doc_count": 18119,
                        "top_tags_hits": {
                            "hits": {
                                "total": 18119,
                                "max_score": 1,
                                "hits": [
                                    {
                                        "_index": "stack",
                                        "_type": "question",
                                        "_id": "602678",
                                        "_score": 1,
                                        "_source": {
                                            "title": "If I change my computers date / time, what could be affected?"
                                        },
                                        "sort": [
                                            1370142868283
                                        ]
                                    }
                                ]
                            }
                        }
                    }
                ]
            },
            doc_cls_map={'question': QuestionDocument, 'paper': PaperDocument},
            mapper_registry={},
        )
        self.assertEqual(len(a.buckets), 3)
        self.assertEqual(a.buckets[0].doc_count, 25365)
        self.assertEqual(a.buckets[0].key, 'windows-7')
        top_tags_agg = a.buckets[0].get_aggregation('top_tags_hits')
        self.assertEqual(top_tags_agg.total, 25365)
        self.assertEqual(top_tags_agg.max_score, 1)
        self.assertEqual(len(top_tags_agg.hits), 1)
        self.assertIsInstance(top_tags_agg.hits[0], QuestionDocument)
        self.assertEqual(top_tags_agg.hits[0]._index, 'stack')
        self.assertEqual(top_tags_agg.hits[0]._type, 'question')
        self.assertEqual(top_tags_agg.hits[0]._score, 1)
        self.assertEqual(top_tags_agg.hits[0]._id, '602679')
        self.assertEqual(top_tags_agg.hits[0].title, 'Windows port opening')
        self.assertEqual(top_tags_agg.hits[0].instance.id, 602679)
        self.assertEqual(top_tags_agg.hits[0].instance.type, 'question')
        self.assertEqual(a.buckets[1].doc_count, 18342)
        self.assertEqual(a.buckets[1].key, 'linux')
        top_tags_agg = a.buckets[1].get_aggregation('top_tags_hits')
        self.assertEqual(top_tags_agg.total, 18342)
        self.assertEqual(top_tags_agg.max_score, 1)
        self.assertEqual(len(top_tags_agg.hits), 1)
        self.assertIsInstance(top_tags_agg.hits[0], PaperDocument)
        self.assertEqual(top_tags_agg.hits[0]._index, 'stack')
        self.assertEqual(top_tags_agg.hits[0]._type, 'paper')
        self.assertEqual(top_tags_agg.hits[0]._score, 1)
        self.assertEqual(top_tags_agg.hits[0]._id, '602672')
        self.assertEqual(top_tags_agg.hits[0].title, 'Ubuntu RFID Screensaver lock-unlock')
        self.assertEqual(top_tags_agg.hits[0].instance.id, 602672)
        self.assertEqual(top_tags_agg.hits[0].instance.type, 'paper')
        self.assertEqual(a.buckets[2].doc_count, 18119)
        self.assertEqual(a.buckets[2].key, 'windows')
        top_tags_agg = a.buckets[2].get_aggregation('top_tags_hits')
        self.assertEqual(top_tags_agg.total, 18119)
        self.assertEqual(top_tags_agg.max_score, 1)
        self.assertEqual(len(top_tags_agg.hits), 1)
        self.assertIsInstance(top_tags_agg.hits[0], DynamicDocument)
        self.assertEqual(top_tags_agg.hits[0]._index, 'stack')
        self.assertEqual(top_tags_agg.hits[0]._type, 'question')
        self.assertEqual(top_tags_agg.hits[0]._score, 1)
        self.assertEqual(top_tags_agg.hits[0]._id, '602678')
        self.assertEqual(top_tags_agg.hits[0].title, 'If I change my computers date / time, what could be affected?')
        self.assertEqual(top_tags_agg.hits[0].instance.id, 602678)
        self.assertEqual(top_tags_agg.hits[0].instance.type, 'question')
        self.assertEqual(question_mapper.call_count, 1)
        self.assertEqual(paper_mapper.call_count, 1)
Esempio n. 6
0
    def test_expression(self):
        f = DynamicDocument.fields

        e = Params({'foo': 'bar'})
        self.assert_expression(
            e,
            {"foo": "bar"}
        )
        self.assertEqual(e['foo'], 'bar')
        self.assertTrue('foo' in e)

        self.assert_expression(
            Match(f.message, 'this is a test'),
            {
                "match": {
                    "message": "this is a test",
                }
            }
        )
        self.assert_expression(
            Match(
                f.message, 'this is a test',
                minimum_should_match='100%',
                cutoff_frequency=0.001,
                boost=2.1
            ),
            {
                "match": {
                    "message": {
                        "query": "this is a test",
                        "minimum_should_match": "100%",
                        "cutoff_frequency": 0.001,
                        "boost": 2.1,
                    }
                }
            }
        )

        self.assert_expression(
            Term(f.user, 'kimchy'),
            {
                "term": {"user": "******"}
            }
        )
        self.assert_expression(
            Term(f.user, 'kimchy', boost=1.2),
            {
                "term": {"user": {"value": "kimchy", "boost": 1.2}}
            }
        )
        self.assert_expression(
            Term('user.login', 'kimchy'),
            {
                "term": {"user.login": "******"}
            }
        )

        self.assert_expression(
            Terms(f.status, [0]),
            {
                "terms": {
                    "status": [0]
                }
            }
        )
        self.assert_expression(
            Terms(f.tags, ['blue', 'pill'], minimum_should_match=1),
            {
                "terms": {
                    "tags": ["blue", "pill"],
                    "minimum_should_match": 1
                }
            }
        )

        self.assert_expression(
            Exists(f.tags),
            {
                "exists": {"field": "tags"}
            }
        )
        self.assert_expression(
            Missing(f.tags, _cache=True),
            {
                "missing": {
                    "field": "tags",
                    "_cache": True
                }
            }
        )

        self.assert_expression(
            Bool(
                must=Term(f.user, 'kimchy'),
                filter=Term(f.tag, 'tech'),
                must_not=Range(f.age, from_=10, to=20),
                should=[Term(f.tag, 'wow'), Term(f.tag, 'elasticsearch', boost=2.1)],
                minimum_should_match=1,
                boost=1.0,
            ),
            {
                "bool": {
                    "must": {
                        "term": {"user": "******"}
                    },
                    "filter": {
                        "term": {"tag": "tech"}
                    },
                    "must_not": {
                        "range": {
                            "age": {"from": 10, "to": 20}
                        }
                    },
                    "should": [
                        {
                            "term": {"tag": "wow"}
                        },
                        {
                            "term": {"tag": {"value": "elasticsearch", "boost": 2.1}}
                        }
                    ],
                    "minimum_should_match": 1,
                    "boost": 1.0
                }
            }
        )

        e = MultiMatch(
            "Will Smith",
            [self.index.star.title.boost(4), self.index.star.wildcard('*_name').boost(2)],
            minimum_should_match='100%'
        )
        self.assert_expression(
            e,
            {
                "multi_match": {
                    "query": "Will Smith",
                    "fields": ["title^4", "*_name^2"],
                    "minimum_should_match": "100%"
                }
            }
        )
        self.assertEqual(
            e._collect_doc_classes(),
            {self.index.star}
        )

        self.assert_expression(
            Range(self.index.product.price, lte=100, boost=2.2, execution='index', _cache=False),
            {
                "range": {
                    "price": {"lte": 100, "boost": 2.2},
                    "execution": "index",
                    "_cache": False
                }
            }
        )

        self.assert_expression(
            Boosting(
                positive=Term(f.field1, 'value1'),
                negative=Term(f.field2, 'value2'),
                negative_boost=0.2
            ),
            {
                "boosting": {
                    "positive": {
                        "term": {
                            "field1": "value1"
                        }
                    },
                    "negative": {
                        "term": {
                            "field2": "value2"
                        }
                    },
                    "negative_boost": 0.2
                }
            }
        )

        self.assert_expression(
            Common(
                f.body, 'nelly the elephant not as a cartoon',
                cutoff_frequency=0.001,
                minimum_should_match=dict(low_freq=2, high_freq=3),
            ),
            {
                "common": {
                    "body": {
                        "query": "nelly the elephant not as a cartoon",
                        "cutoff_frequency": 0.001,
                        "minimum_should_match": {
                            "low_freq": 2,
                            "high_freq": 3
                        }
                    }
                }
            }
        )

        self.assert_expression(
            ConstantScore(filter=Term(f.user, 'kimchy'), boost=1.2),
            {
                "constant_score": {
                    "filter": {
                        "term": { "user": "******"}
                    },
                    "boost": 1.2
                }
            }
        )
        self.assert_expression(
            FunctionScore(
                query=MatchAll(),
                field_value_factor={
                    'field': f.popularity,
                    'factor': 1.2,
                    'modifier': 'sqrt',
                }
            ),
            {
                "function_score": {
                    "query": {"match_all": {}},
                    "field_value_factor": {
                        "field": "popularity",
                        "factor": 1.2,
                        "modifier": "sqrt"
                    }
                }
            }
        )

        self.assert_expression(
            DisMax([Term(f.age, 34), Term(f.age, 35)], boost=1.2, tie_breaker=0.7),
            {
                "dis_max": {
                    "tie_breaker": 0.7,
                    "boost": 1.2,
                    "queries": [
                        {
                            "term" : { "age" : 34 }
                        },
                        {
                            "term" : { "age" : 35 }
                        }
                    ]
                }
            }
        )

        self.assert_expression(
            Filtered(
                filter=Range(f.created, gte='now - 1d / d'),
                query=Match(f.tweet, 'full text search')
            ),
            {
                "filtered": {
                    "query": {
                        "match": { "tweet": "full text search" }
                    },
                    "filter": {
                        "range": { "created": { "gte": "now - 1d / d" }}
                    }
                }
            }
        )

        self.assert_expression(
            Ids(['123456']),
            {
                "ids": {
                    "values": ["123456"]
                }
            }
        )
        self.assert_expression(
            Ids(['1', '4', '100'], type="my_type"),
            {
                "ids": {
                    "type": "my_type",
                    "values": ["1", "4", "100"]
                }
            }
        )

        self.assert_expression(
            Prefix(f.user, 'ki', boost=2.0),
            {
                "prefix": { "user":  { "value": "ki", "boost": 2.0 } }
            }
        )

        self.assert_expression(
            MatchAll(),
            {"match_all": {}}
        )
        self.assert_expression(
            MatchAll(boost=1.2),
            {
                "match_all": { "boost" : 1.2 }
            }
        )

        self.assert_expression(
            Query(Match(f.title, 'this that thus')),
            {
                "query": {
                    "match": {
                        "title": "this that thus"
                    }
                }
            }
        )
        self.assert_expression(
            Query(Match(f.title, 'this that thus'), _cache=True),
            {
                "fquery": {
                    "query": {
                        "match": {
                            "title": "this that thus"
                        }
                    },
                    "_cache": True
                }
            }
        )

        self.assertRaises(NotImplementedError, BooleanExpression)

        self.assert_expression(
            And(
                Range(f.post_date, from_='2010-03-01', to='2010-04-01'),
                Prefix(f.name.second, 'ba')
            ),
            {
                "and": [
                    {
                        "range": {
                            "post_date": {
                                "from": "2010-03-01",
                                "to": "2010-04-01"
                            }
                        }
                    },
                    {
                        "prefix" : { "name.second" : "ba" }
                    }
                ]
            }
        )
        self.assert_expression(
            And(
                Range(f.post_date, from_='2010-03-01', to='2010-04-01'),
                Prefix(f.name.second, 'ba'),
                _cache=True
            ),
            {
                "and": {
                    "filters": [
                        {
                            "range": {
                                "post_date": {
                                    "from": "2010-03-01",
                                    "to": "2010-04-01"
                                }
                            }
                        },
                        {
                            "prefix" : { "name.second" : "ba" }
                        }
                    ],
                    "_cache": True
                }
            }
        )

        self.assert_expression(
            Or(Term(f.name.second, 'banon'), Term(f.name.nick, 'kimchy')),
            {
                "or": [
                    {
                        "term": {"name.second": "banon"}
                    },
                    {
                        "term": {"name.nick": "kimchy"}
                    }
                ]
            }
        )
        self.assert_expression(
            And(Or(Term(f.name.nick, 'kimchy'))),
            {
                "term": {"name.nick": "kimchy"}
            }
        )

        self.assert_expression(
            Not(
                Range(f.post_date, from_='2010-03-01', to='2010-04-01'),
            ),
            {
                "not": {
                    "range": {
                        "post_date": {
                            "from": "2010-03-01",
                            "to": "2010-04-01"
                        }
                    }
                }
            }
        )
        self.assert_expression(
            Not(
                Range(f.post_date, from_='2010-03-01', to='2010-04-01'),
                _cache=True,
            ),
            {
                "not": {
                    "filter":  {
                        "range": {
                            "post_date": {
                                "from": "2010-03-01",
                                "to": "2010-04-01"
                            }
                        }
                    },
                    "_cache": True
                }
            }
        )

        self.assert_expression(
            Sort(f.post_date),
            "post_date"
        )
        self.assert_expression(
            Sort(f.age, 'desc'),
            {
                "age": "desc"
            }
        )
        self.assert_expression(
            Sort(f.price, 'asc', mode='avg'),
            {
                "price": {
                    "order": "asc",
                    "mode": "avg"
                }
            }
        )
        self.assert_expression(
            Sort(
                f.offer.price.sort, 'asc', mode='avg',
                nested_filter=Term(f.offer.color, 'blue')
            ),
            {
                "offer.price.sort": {
                    "order": "asc",
                    "mode": "avg",
                    "nested_filter": {
                        "term": {"offer.color": "blue"}
                    }
                }
            }
        )

        self.assert_expression(
            SpanFirst(SpanTerm(f.user, 'kimchy'), end=3),
            {
                "span_first": {
                    "match": {
                        "span_term": {"user": "******"}
                    },
                    "end": 3
                }
            }
        )

        self.assert_expression(
            SpanMulti(Prefix(f.user, 'ki', boost=1.08)),
            {
                "span_multi": {
                    "match": {
                        "prefix": {
                            "user":  {"value": "ki", "boost": 1.08}
                        }
                    }
                }
            }
        )

        self.assert_expression(
            SpanNear(
                [SpanTerm(f.field, 'value1'),
                 SpanTerm(f.field, 'value2'),
                 SpanTerm(f.field, 'value3')],
                slop=12,
                in_order=False,
                collect_payloads=False,
            ),
            {
                "span_near": {
                    "clauses": [
                        {"span_term": {"field": "value1"}},
                        {"span_term": {"field": "value2"}},
                        {"span_term": {"field": "value3"}}
                    ],
                    "slop": 12,
                    "in_order": False,
                    "collect_payloads": False
                }
            }
        )
        
        self.assert_expression(
            SpanNot(
                SpanTerm(f.field1, 'hoya'),
                SpanNear([SpanTerm(f.field1, 'la'), SpanTerm(f.field1, 'hoya')], slop=0, in_order=True),
            ),
            {
                "span_not": {
                    "include": {
                        "span_term": {"field1": "hoya"}
                    },
                    "exclude": {
                        "span_near": {
                            "clauses": [
                                {"span_term": {"field1": "la"}},
                                {"span_term": {"field1": "hoya"}}
                            ],
                            "slop": 0,
                            "in_order": True
                        }
                    }
                }
            }
        )

        self.assert_expression(
            SpanOr(
                [
                    SpanTerm(f.field, 'value1'),
                    SpanTerm(f.field, 'value2'),
                    SpanTerm(f.field, 'value3')
                ],
                boost=2,
            ),
            {
                "span_or": {
                    "clauses": [
                        {"span_term": {"field": "value1"}},
                        {"span_term": {"field": "value2"}},
                        {"span_term": {"field": "value3"}}
                    ],
                    "boost": 2
                }
            }
        )

        self.assert_expression(
            Limit(1000),
            {
                "limit": {
                    "value": 1000
                }
            }
        )

        e = Nested(
            self.index.movie.stars,
            Match(self.index.movie.stars.full_name, 'Will Smith'),
            score_mode='max',
        )
        self.assert_expression(
            e,
            {
                "nested": {
                    "path": "stars",
                    "query": {
                        "match": {
                            "stars.full_name": "Will Smith"
                        }
                    },
                    "score_mode": "max"
                }
            }
        )
        self.assertEqual(
            e._collect_doc_classes(),
            {self.index.movie}
        )

        e = HasParent(
            self.index.blog.tag == 'something',
            parent_type=self.index.blog,
            score_mode='score',
        )
        self.assert_expression(
            e,
            {
                "has_parent": {
                    "parent_type": "blog",
                    "query": {
                        "term": {
                            "tag": "something"
                        }
                    },
                    "score_mode": "score"
                }
            }
        )
        self.assertEqual(
            e._collect_doc_classes(),
            set()
        )

        e = HasParent(
            self.index.blog.tag == 'something',
            score_mode='score',
        )
        self.assert_expression(
            e,
            {
                "has_parent": {
                    "parent_type": "blog",
                    "query": {
                        "term": {
                            "tag": "something"
                        }
                    },
                    "score_mode": "score"
                }
            }
        )
        self.assertEqual(
            e._collect_doc_classes(),
            set()
        )

        e = HasChild(
            self.index.blog_tag.tag == 'something',
            type=self.index.blog_tag,
            score_mode='sum',
        )
        self.assert_expression(
            e,
            {
                "has_child": {
                    "type": "blog_tag",
                    "query": {
                        "term": {
                            "tag": "something"
                        }
                    },
                    "score_mode": "sum"
                }
            }
        )
        self.assertEqual(
            e._collect_doc_classes(),
            set()
        )

        e = HasChild(
            self.index.blog_tag.tag == 'something',
            score_mode='sum',
        )
        self.assert_expression(
            e,
            {
                "has_child": {
                    "type": "blog_tag",
                    "query": {
                        "term": {
                            "tag": "something"
                        }
                    },
                    "score_mode": "sum"
                }
            }
        )
        self.assertEqual(
            e._collect_doc_classes(),
            set()
        )
Esempio n. 7
0
def test_attr_bool_facet_filter__multiple_selected_values(bool_qf, compiler):
    sq = bool_qf.apply(SearchQuery(), {'a1': ['true', 'false'], 'a2': 'true'})
    assert sq.to_dict(compiler=compiler) == (SearchQuery().aggs({
        'qf.attr_bool.filter':
        agg.Filter(
            Bool.must(
                Terms('attr.bool', [0b11, 0b10]),
                Term('attr.bool', 0b101),
            ),
            aggs={'qf.attr_bool': agg.Terms(Field('attr.bool'), size=100)}),
        'qf.attr_bool.filter:1':
        agg.Filter(Term('attr.bool', 0b101),
                   aggs={
                       'qf.attr_bool:1':
                       agg.Terms(Field('attr.bool'),
                                 size=2,
                                 include=[0b10, 0b11])
                   }),
        'qf.attr_bool.filter:2':
        agg.Filter(Terms('attr.bool', [0b11, 0b10]),
                   aggs={
                       'qf.attr_bool:2':
                       agg.Terms(Field('attr.bool'),
                                 size=2,
                                 include=[0b100, 0b101])
                   }),
    }).post_filter(
        Bool.must(
            Terms('attr.bool', [0b11, 0b10]),
            Term('attr.bool', 0b101),
        )).to_dict(compiler=compiler))
    qf_res = bool_qf.process_result(
        SearchResult(
            {
                'aggregations': {
                    'qf.attr_bool.filter': {
                        'doc_count': 200,
                        'qf.attr_bool': {
                            'buckets': [
                                {
                                    'key': 0b11,
                                    'doc_count': 123,
                                },
                                {
                                    'key': 0b101,
                                    'doc_count': 1
                                },
                            ]
                        }
                    },
                    'qf.attr_bool.filter:1': {
                        'doc_count': 163,
                        'qf.attr_bool:1': {
                            'buckets': [
                                {
                                    'key': 0b11,
                                    'doc_count': 123,
                                },
                                {
                                    'key': 0b10,
                                    'doc_count': 99
                                },
                            ]
                        }
                    },
                    'qf.attr_bool.filter:2': {
                        'doc_count': 144,
                        'qf.attr_bool:2': {
                            'buckets': [
                                {
                                    'key': 0b101,
                                    'doc_count': 1
                                },
                            ]
                        }
                    },
                }
            },
            aggregations=sq.get_context().aggregations))
    assert len(qf_res.attr_bool.facets) == 2
    facet = qf_res.attr_bool.get_facet(1)
    assert len(facet.all_values) == 2
    assert len(facet.selected_values) == 2
    assert len(facet.values) == 0
    assert facet.all_values[0] is facet.selected_values[0]
    assert facet.all_values[1] is facet.selected_values[1]
    assert facet.all_values[0].value is True
    assert facet.all_values[0].count == 123
    assert facet.all_values[0].count_text == '123'
    assert facet.all_values[0].selected is True
    assert facet.all_values[1].value is False
    assert facet.all_values[1].count == 99
    assert facet.all_values[1].count_text == '99'
    assert facet.all_values[1].selected is True
    facet = qf_res.attr_bool.get_facet(2)
    assert len(facet.all_values) == 1
    assert len(facet.selected_values) == 1
    assert len(facet.values) == 0
    assert facet.all_values[0] is facet.selected_values[0]
    assert facet.all_values[0].value is True
    assert facet.all_values[0].count == 1
    assert facet.all_values[0].count_text == '1'
    assert facet.all_values[0].selected is True
Esempio n. 8
0
def test_combined_facet_filters(qf, compiler):
    sq = qf.apply(SearchQuery(), {
        'a1': 'true',
        'a18': '58084',
        'a324': '57005',
        'a8__gte': '2.71',
    })
    assert sq.to_dict(compiler=compiler) == (SearchQuery().aggs({
        'qf.attr_bool.filter':
        agg.Filter(Bool.must(
            Term('attr.bool', 0b11),
            Term('attr.int', 0x12_0000e2e4),
            Term('attr.int', 0x144_0000dead),
        ),
                   aggs={
                       'qf.attr_bool': agg.Terms(Field('attr.bool'), size=100),
                   }),
        'qf.attr_bool.filter:1':
        agg.Filter(Bool.must(
            Term('attr.int', 0x12_0000e2e4),
            Term('attr.int', 0x144_0000dead),
        ),
                   aggs={
                       'qf.attr_bool:1':
                       agg.Terms(
                           Field('attr.bool'),
                           size=2,
                           include=[0b10, 0b11],
                       ),
                   }),
        'qf.attr_int.filter':
        agg.Filter(Bool.must(
            Term('attr.bool', 0b11),
            Term('attr.int', 0x12_0000e2e4),
            Term('attr.int', 0x144_0000dead),
        ),
                   aggs={
                       'qf.attr_int': agg.Terms(Field('attr.int'),
                                                size=10_000),
                   }),
        'qf.attr_int.filter:18':
        agg.Filter(Bool.must(
            Term('attr.bool', 0b11),
            Term('attr.int', 0x144_0000dead),
        ),
                   aggs={
                       'qf.attr_int:18': agg.Terms(Field('attr.int'),
                                                   size=100),
                   }),
        'qf.attr_int.filter:324':
        agg.Filter(Bool.must(
            Term('attr.bool', 0b11),
            Term('attr.int', 0x12_0000e2e4),
        ),
                   aggs={
                       'qf.attr_int:324': agg.Terms(Field('attr.int'),
                                                    size=100),
                   })
    }).post_filter(Term('attr.bool', 0b11)).post_filter(
        Term('attr.int', 0x12_0000e2e4)).post_filter(
            Term('attr.int', 0x144_0000dead)).filter(
                Range('attr.float', gte=0x8_402d70a4,
                      lte=0x8_7f800000)).to_dict(compiler=compiler))