Esempio n. 1
0
 def __init__(
     self,
     brightness_std: float = 0.5,
     contrast_std: float = 0.5,
     channels: Optional[Sequence[int]] = None,
     prob: float = 1.0,
 ):
     if not channels:  # Support empty sequences as an alias for None
         channels = None
     self.channels = channels
     self.prob = prob
     self.brightness_gen = Normal(mean=0.0, sigma=brightness_std)
     self.contrast_gen = Normal(mean=1.0, sigma=contrast_std)
Esempio n. 2
0
 def __init__(self,
              sigma: float = 0.1,
              channels: Optional[Sequence[int]] = None,
              prob: float = 1.0,
              rng: Optional[np.random.RandomState] = None):
     self.channels = channels
     self.prob = prob
     self.rng = np.random.RandomState() if rng is None else rng
     self.noise_generator = Normal(mean=0, sigma=sigma, rng=rng)
Esempio n. 3
0
 def __init__(
         self,
         sigma: float = 0.1,
         channels: Optional[Sequence[int]] = None,
         prob: float = 1.0,
 ):
     self.channels = channels
     self.prob = prob
     self.noise_generator = Normal(mean=0, sigma=sigma)
Esempio n. 4
0
 def __init__(
         self,
         gamma_std: float = 0.5,
         gamma_min: float = 0.25,  # Prevent gamma <= 0 (0 causes zero division)
         channels: Optional[Sequence[int]] = None,
         prob: float = 1.0,
 ):
     if not channels:  # Support empty sequences as an alias for None
         channels = None
     self.channels = channels
     self.prob = prob
     self.gamma_generator = Normal(
         mean=1.0, sigma=gamma_std, bounds=(gamma_min, np.inf)
     )
Esempio n. 5
0
 def __init__(
         self,
         gamma_std: float = 0.5,
         gamma_min:
     float = 0.25,  # Prevent gamma <= 0 (0 causes zero division)
         channels: Optional[Sequence[int]] = None,
         prob: float = 1.0,
         rng: Optional[np.random.RandomState] = None):
     self.channels = channels
     self.prob = prob
     self.rng = np.random.RandomState() if rng is None else rng
     self.gamma_generator = Normal(mean=1.0,
                                   sigma=gamma_std,
                                   bounds=(gamma_min, np.inf),
                                   rng=rng)