Esempio n. 1
0
def main():
    gps_files = glob.glob('../data/prototype/**/gps_points.csv')
    trip_files = glob.glob('../data/prototype/**/gps_trips.csv')

    file_results = process_file(trip_file = trip_files[0], gps_file = gps_files[0])
    seq_results = build_seq(input_df = file_results['df'], unique_trips = file_results['unique_trips'])

    X = seq_results['x']
    y = seq_results['y']

    print('Bulding training data from files..')
    for i in range(1, len(gps_files)):
        file_results = process_file(trip_file = trip_files[i], gps_file = gps_files[i])
        seq_results = build_seq(input_df = file_results['df'], unique_trips = file_results['unique_trips'])

        X = np.vstack((X, seq_results['x']))
        y = np.vstack((y, seq_results['y']))

    x_train, x_val, y_train, y_val = train_test_split(X, y, random_state=1, train_size=0.8)

    rdd = to_simple_rdd(sc, x_train, y_train)

    model = build_model()

    spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')

    spark_model.fit(rdd, epochs=5, batch_size=32, verbose=0, validation_split=0.1)
#    model.fit(x_train, y_train, epochs=5, validation_data=(x_val, y_val))

    y_pred = spark_model.predict(x_val)

    acc = sum(np.argmax(y_pred, axis=1) == np.argmax(y_val, axis=1)) / y_pred.shape[0]

    print("Validation Accuracy: {number:.{digits}f}%".format(number=(acc*100), digits=2))
Esempio n. 2
0
def test_training_classification(spark_context, mode, parameter_server_mode,
                                 mnist_data, classification_model):
    # Define basic parameters
    batch_size = 64
    epochs = 10

    # Load data
    x_train, y_train, x_test, y_test = mnist_data
    x_train = x_train[:1000]
    y_train = y_train[:1000]

    sgd = SGD(lr=0.1)
    classification_model.compile(sgd, 'categorical_crossentropy', ['acc'])

    # Build RDD from numpy features and labels
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # Initialize SparkModel from keras model and Spark context
    spark_model = SparkModel(classification_model,
                             frequency='epoch',
                             mode=mode,
                             parameter_server_mode=parameter_server_mode,
                             port=4000 + random.randint(0, 500))

    # Train Spark model
    spark_model.fit(rdd,
                    epochs=epochs,
                    batch_size=batch_size,
                    verbose=0,
                    validation_split=0.1)

    # run inference on trained spark model
    predictions = spark_model.predict(x_test)
    # run evaluation on trained spark model
    evals = spark_model.evaluate(x_test, y_test)

    # assert we can supply rdd and get same prediction results when supplying numpy array
    test_rdd = spark_context.parallelize(x_test)
    assert [np.argmax(x) for x in predictions
            ] == [np.argmax(x) for x in spark_model.predict(test_rdd)]

    # assert we get the same prediction result with calling predict on keras model directly
    assert [np.argmax(x) for x in predictions] == [
        np.argmax(x) for x in spark_model.master_network.predict(x_test)
    ]

    # assert we get the same evaluation results when calling evaluate on keras model directly
    assert isclose(evals[0],
                   spark_model.master_network.evaluate(x_test, y_test)[0],
                   abs_tol=0.01)
    assert isclose(evals[1],
                   spark_model.master_network.evaluate(x_test, y_test)[1],
                   abs_tol=0.01)
def test_sync_mode(spark_context):
    # Define basic parameters
    batch_size = 64
    nb_classes = 10
    epochs = 10

    # Load data
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype("float32")
    x_test = x_test.astype("float32")
    x_train /= 255
    x_test /= 255
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')

    # Convert class vectors to binary class matrices
    y_train = np_utils.to_categorical(y_train, nb_classes)
    y_test = np_utils.to_categorical(y_test, nb_classes)

    model = Sequential()
    model.add(Dense(128, input_dim=784))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(10))
    model.add(Activation('softmax'))

    sgd = SGD(lr=0.1)
    model.compile(sgd, 'categorical_crossentropy', ['acc'])

    # Build RDD from numpy features and labels
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # Initialize SparkModel from Keras model and Spark context
    spark_model = SparkModel(model, mode='synchronous')

    # Train Spark model
    spark_model.fit(rdd,
                    epochs=epochs,
                    batch_size=batch_size,
                    verbose=2,
                    validation_split=0.1)

    # Evaluate Spark model by evaluating the underlying model
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    assert score[1] >= 0.70
Esempio n. 4
0
def test_spark_model_end_to_end(spark_context):
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # sync epoch
    spark_model = SparkModel(model, frequency='epoch', mode='synchronous', num_workers=2)
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size, verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])

    # sync batch
    spark_model = SparkModel(model, frequency='batch', mode='synchronous', num_workers=2)
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size, verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])

    # async epoch
    spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size, verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])

    # hogwild epoch
    spark_model = SparkModel(model, frequency='epoch', mode='hogwild')
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size, verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])
Esempio n. 5
0
def test_training_regression(spark_context, mode, parameter_server_mode,
                             boston_housing_dataset, regression_model):
    x_train, y_train, x_test, y_test = boston_housing_dataset
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # Define basic parameters
    batch_size = 64
    epochs = 10
    sgd = SGD(lr=0.0000001)
    regression_model.compile(sgd, 'mse', ['mae'])
    spark_model = SparkModel(regression_model,
                             frequency='epoch',
                             mode=mode,
                             parameter_server_mode=parameter_server_mode,
                             port=4000 + random.randint(0, 500))

    # Train Spark model
    spark_model.fit(rdd,
                    epochs=epochs,
                    batch_size=batch_size,
                    verbose=0,
                    validation_split=0.1)

    # run inference on trained spark model
    predictions = spark_model.predict(x_test)
    # run evaluation on trained spark model
    evals = spark_model.evaluate(x_test, y_test)

    # assert we can supply rdd and get same prediction results when supplying numpy array
    test_rdd = spark_context.parallelize(x_test)
    assert all(
        np.isclose(x, y, 0.01)
        for x, y in zip(predictions, spark_model.predict(test_rdd)))

    # assert we get the same prediction result with calling predict on keras model directly
    assert all(
        np.isclose(x, y, 0.01) for x, y in zip(
            predictions, spark_model.master_network.predict(x_test)))

    # assert we get the same evaluation results when calling evaluate on keras model directly
    assert isclose(evals[0],
                   spark_model.master_network.evaluate(x_test, y_test)[0],
                   abs_tol=0.01)
    assert isclose(evals[1],
                   spark_model.master_network.evaluate(x_test, y_test)[1],
                   abs_tol=0.01)
Esempio n. 6
0
def train_elephas_model(x, y):
    model = models.Sequential()

    # Input Layer
    sgd = optimizers.Adam(lr=0.01)
    model.add(Dense(256, activation="relu", input_shape=(x.shape[1],)))
    model.add(Dropout(0.05))

    model.add(Dense(256, activation="relu", input_shape=(x.shape[1],)))
    model.add(Dropout(0.05))

    # output layer
    model.add(Dense(1))
    model.compile(optimizer=sgd, loss="mse", metrics=["mse"])
    model.summary()

    rdd = to_simple_rdd(sc, x, y)
    spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')
    # spark_model.fit(rdd, epochs=10, batch_size=64, verbose=1, validation_split=0.2)
    spark_model.fit(rdd, epochs=25, batch_size=64, verbose=1, validation_split=0.2)

    return spark_model
Esempio n. 7
0
def dist_training(n_iter):
    sbcnn = SBCNN_Model(field_size, bands, frames, num_channels, num_labels)

    sgd = SGD(lr=0.001, momentum=0.0, decay=0.0, nesterov=False)
    sbcnn.compile(loss='categorical_crossentropy',
                  metrics=['accuracy'],
                  optimizer=sgd)

    train_arr, train_labels_arr, test_arr, test_labels_arr = get_data()
    rdd = to_simple_rdd(sc, train_arr, train_labels_arr)

    spark_model = SparkModel(sbcnn, frequency='epoch', mode='asynchronous')
    spark_model.fit(rdd,
                    epochs=n_iter,
                    batch_size=32,
                    verbose=0,
                    validation_split=0.1)

    score = spark_model.master_network.evaluate(test_arr,
                                                test_labels_arr,
                                                verbose=2)
    print('Test accuracy:', score[1])
Esempio n. 8
0
def test_training_custom_activation(mode, spark_context):
    def custom_activation(x):
        return sigmoid(x) + 1

    model = Sequential()
    model.add(Dense(1, input_dim=1, activation=custom_activation))
    model.add(Dense(1, activation='sigmoid'))

    sgd = SGD(lr=0.1)
    model.compile(sgd, 'binary_crossentropy', ['acc'])

    x_train = np.random.rand(1000)
    y_train = np.zeros(1000)
    x_test = np.random.rand(100)
    y_test = np.zeros(100)
    y_train[:500] = 1
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    spark_model = SparkModel(model, frequency='epoch', mode=mode,
                             custom_objects={'custom_activation': custom_activation})
    spark_model.fit(rdd, epochs=1, batch_size=16, verbose=0, validation_split=0.1)
    assert spark_model.predict(x_test)
    assert spark_model.evaluate(x_test, y_test)
Esempio n. 9
0
            train_rdd = to_simple_rdd(sc, train_input, decoder_train_target)

            if args.ensemble:
                model = DistributedEnsembleSeq2Seq(model_config)
            else:
                model = DistributedSeq2Seq(model_config)

            spark_model = SparkModel(model.model,
                                     frequency='epoch',
                                     mode='synchronous',
                                     batch_size=args.batch_size,
                                     custom_objects={'EncoderSlice': EncoderSlice, 'DecoderSlice': DecoderSlice})

            spark_model.fit(train_rdd,
                            batch_size=model_config.batch_size,
                            epochs=model_config.epochs,
                            validation_split=0.0,
                            verbose=1)

        model.evaluate(encoder_test_input, raw_test_target)

    else:
        training_generator = WMTSequence(encoder_train_input, decoder_train_input, decoder_train_target, model_config)
        validation_generator = WMTSequence(encoder_dev_input, decoder_dev_input, decoder_dev_target, model_config)

        if args.ensemble:
            model = EnsembleSeq2Seq(model_config)
        else:
            model = Seq2Seq(model_config)

        if args.load_checkpoint:
Esempio n. 10
0
class SparseGate(ModelFrame):
    def __init__(self, x_train, y_train, x_test, y_test, inputs,
                 spark_context):
        ModelFrame.__init__(self, x_train, y_train, x_test, y_test,
                            spark_context)
        self.gateModel = None
        self.inputs = inputs

    def gating_network(self):
        c1 = Conv2D(32, (3, 3),
                    padding='same',
                    kernel_regularizer=regularizers.l2(weight_decay),
                    input_shape=self.x_train.shape[1:],
                    name='gate1')(self.inputs)
        c2 = Activation('elu', name='gate2')(c1)
        c3 = BatchNormalization(name='gate3')(c2)
        c4 = Conv2D(32, (3, 3),
                    padding='same',
                    kernel_regularizer=regularizers.l2(weight_decay),
                    name='gate4')(c3)
        c5 = Activation('elu', name='gate5')(c4)
        c6 = BatchNormalization(name='gate6')(c5)
        c7 = MaxPooling2D(pool_size=(2, 2), name='gate7')(c6)
        c8 = Dropout(0.2, name='gate26')(c7)
        c9 = Conv2D(32 * 2, (3, 3),
                    name='gate8',
                    padding='same',
                    kernel_regularizer=regularizers.l2(weight_decay))(c8)
        c10 = Activation('elu', name='gate9')(c9)
        c11 = BatchNormalization(name='gate25')(c10)
        c12 = Conv2D(32 * 2, (3, 3),
                     name='gate10',
                     padding='same',
                     kernel_regularizer=regularizers.l2(weight_decay))(c11)
        c13 = Activation('elu', name='gate11')(c12)
        c14 = BatchNormalization(name='gate12')(c13)
        c15 = MaxPooling2D(pool_size=(2, 2), name='gate13')(c14)
        c16 = Dropout(0.3, name='gate14')(c15)

        c25 = Flatten(name='gate23')(c16)
        c26 = Dense(5, name='gate24', activation='elu')(c25)

        model = Model(inputs=self.inputs, outputs=c26)
        return model

    def create_gate_model(self, expert_models):
        gate_network = self.gating_network()
        merged = Lambda(lambda x: K.tf.transpose(
            sum(
                K.tf.transpose(x[i]) * x[0][:, i - 1] for i in range(
                    1, len(x)))))([gate_network.layers[-1].output] +
                                  [m.layers[-1].output for m in expert_models])
        b = Activation('softmax', name='gatex')(merged)
        model = Model(inputs=self.inputs, outputs=b)
        model.compile(loss='categorical_crossentropy',
                      optimizer=Adam(),
                      metrics=['accuracy'])
        return model

    def train_gate(self, datagen, weights_file):
        model = self.gateModel
        model.compile(loss='categorical_crossentropy',
                      optimizer=Adam(),
                      metrics=['accuracy'])
        print(model.summary())
        self.gateModel = SparkModel(model,
                                    frequency='epoch',
                                    mode='asynchronous')
        score = self.gateModel.master_network.evaluate(self.x_test,
                                                       self.y_test,
                                                       verbose=2,
                                                       batch_size=50)
        self.gateModel.fit(self.rdd, epochs=1, batch_size=50, verbose=1)
        self.gateModel = self.gateModel.master_network
        self.gateModel.save_weights(weights_file + '.hdf5')

        file = '../lib/output.txt'
        if os.path.exists(file):
            append_write = 'a'
        else:
            append_write = 'w'

        #score = self.gateModel.evaluate(self.x_test, self.y_test, verbose=2, batch_size=50)
        print("------------------------------")
        print("Score is:" + str(score[1]))
        print("-------------------------------")
        text_file = open(file, append_write)
        text_file.write("Score: %s" % score[1])
        text_file.close()

    def load_gate_weights(self,
                          model_old,
                          weights_file='../lib/weights/moe_full.hdf5'):
        model_old.load_weights(weights_file)
        for l in self.gateModel.layers:
            for b in model_old.layers:
                if (l.name == b.name):
                    l.set_weights(b.get_weights())
                    print("loaded gate layer " + str(l.name))
    model.add(Dense(1))

    metrics = ['MeanSquaredError', 'MeanAbsoluteError']
    model.compile(loss='mean_squared_error', optimizer='adam', metrics=metrics)
    print(model.summary())

    rdd = train_data.rdd.map(lambda x:
                             (x[0].toArray().reshape(1, len(x[0])), x[1]))
    spark_model = SparkModel(model,
                             frequency='epoch',
                             mode='synchronous',
                             metrics=metrics)
    start = time()
    spark_model.fit(rdd,
                    epochs=1,
                    batch_size=64,
                    verbose=0,
                    validation_split=0.1)
    fit_dt = time() - start
    print(f"Fit took: {fit_dt}")

    x_test = test_data.toPandas()['features']
    x_test = np.asarray(test_data.rdd.map(lambda x: x[0].toArray()).collect())
    x_test = x_test.reshape((x_test.shape[0], 1, x_test.shape[1]))
    y_test = test_data.toPandas()["Weighted_Price"].to_numpy()
    y_test = y_test.reshape((len(y_test), 1, 1))
    print(f"X shape: {x_test.shape}, Y shape: {y_test.shape}")

    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print(f"Test score: {score}")
Esempio n. 12
0
print("Num Partitions: ", train_rdd.getNumPartitions())


# ============ MODEL SETUP ===========
from keras.optimizers import SGD

wavenet_model = create_wavenet(stack_layers, n_output_channels, n_filter_list, num_stacks, skip=False)
adam_opt = keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False)
wavenet_model.compile(optimizer=SGD(), loss='categorical_crossentropy')
print(wavenet_model.summary())


# ============ ELEPHAS TRAIN ===========
spark_model = SparkModel(wavenet_model, mode='hogwild', num_workers=128)
spark_model.fit(train_rdd, epochs=64, batch_size=64, verbose=1, validation_split=0.1)

print("Finished Training :)")

# =========== SAVE FITTED MDOEL ===========
# Save model and weights out to local
filename_out = model_save_out + "_weights.h5"
spark_model.save(filename_out)

wavenet_json = wavenet_model.to_json()
with open(model_save_out + ".json", "w") as save_model:
    save_model.write(wavenet_json)


x_test = np.array(train_rdd.map(lambda x: x[0]).take(1))
y_test = np.array(train_rdd.map(lambda x: x[1]).take(1))
Esempio n. 13
0
File: HAN.py Progetto: sd12832/HAN
class HAN(object):
    """
    HAN model is implemented here.
    """
    def __init__(self,
                 text,
                 labels,
                 pretrained_embedded_vector_path,
                 max_features,
                 max_senten_len,
                 max_senten_num,
                 embedding_size,
                 num_categories=None,
                 validation_split=0.2,
                 verbose=0):
        """Initialize the HAN module
        Keyword arguments:
        text -- list of the articles for training.
        labels -- labels corresponding the given `text`.
        pretrained_embedded_vector_path -- path of any pretrained vector
        max_features -- max features embeddeding matrix can have. To more checkout https://keras.io/layers/embeddings/
        max_senten_len -- maximum sentence length. It is recommended not to use the maximum one but the one that covers 0.95 quatile of the data.
        max_senten_num -- maximum number of sentences. It is recommended not to use the maximum one but the one that covers 0.95 quatile of the data.
        embedding_size -- size of the embedding vector
        num_categories -- total number of categories.
        validation_split -- train-test split. 
        verbose -- how much you want to see.
        """
        try:
            self.verbose = verbose
            self.max_features = max_features
            self.max_senten_len = max_senten_len
            self.max_senten_num = max_senten_num
            self.embed_size = embedding_size
            self.validation_split = validation_split
            self.embedded_dir = pretrained_embedded_vector_path
            self.text = pd.Series(text)
            self.categories = pd.Series(labels)
            self.classes = self.categories.unique().tolist()
            # Initialize default hyperparameters
            # You can change it using `set_hyperparameters` function
            self.hyperparameters = {
                'l2_regulizer': None,
                'dropout_regulizer': None,
                'rnn': LSTM,
                'rnn_units': 150,
                'dense_units': 200,
                'activation': 'softmax',
                'optimizer': 'adam',
                'metrics': ['acc'],
                'loss': 'categorical_crossentropy'
            }
            if num_categories is not None:
                assert (num_categories == len(self.classes))
            assert (self.text.shape[0] == self.categories.shape[0])
            self.data, self.labels = self.preprocessing()
            self.x_train, self.y_train, self.x_val, self.y_val = self.split_dataset(
            )
            self.embedding_index = self.add_glove_model()
            self.set_model()
        except AssertionError:
            print('Input and label data must be of same size')

        # Implement this after you have seen all the different kinds of errors
        # try:
        #     conf = SparkConf().setAppName('HANMusicClassifier').setMaster('')
        #     self.sc = SparkContext(conf=conf)
        # except Error:
        conf = SparkConf().setAppName('HANMusicClassifier')
        self.sc = SparkContext(conf=conf)

    def set_hyperparameters(self, tweaked_instances):
        """Set hyperparameters of HAN model.
        Keywords arguemnts:
        tweaked_instances -- dictionary of all those keys you want to change
        """
        for key, value in tweaked_instances.items():
            if key in self.hyperparameters:
                self.hyperparameters[key] = value
            else:
                raise KeyError(key + ' does not exist in hyperparameters')
            self.set_model()

    def show_hyperparameters(self):
        """To check the values of all the current hyperparameters
        """
        print('Hyperparameter\tCorresponding Value')
        for key, value in self.hyperparameters.items():
            print(key, '\t\t', value)

    def clean_string(self, string):
        """
        Tokenization/string cleaning for dataset
        Every dataset is lower cased except
        """
        string = re.sub(r"\\", "", string)
        string = re.sub(r"\'", "", string)
        string = re.sub(r"\"", "", string)
        return string.strip().lower()

    def add_dataset(self, text, labels):
        try:
            self.text = pd.concat([self.text, pd.Series(text)])
            self.categories = pd.concat([self.categories, pd.Series(labels)])
            assert (len(self.classes) == self.categories.unique().tolist())
        except AssertionError:
            print("New class cannot be added in this manner")

    def preprocessing(self):
        """Preprocessing of the text to make it more resonant for training
        """
        paras = []
        labels = []
        texts = []
        for idx in range(self.text.shape[0]):
            text = self.clean_string(self.text[idx])
            texts.append(text)
            sentences = tokenize.sent_tokenize(text)
            paras.append(sentences)
        tokenizer = Tokenizer(num_words=self.max_features, oov_token=True)
        tokenizer.fit_on_texts(texts)
        data = np.zeros((len(texts), self.max_senten_num, self.max_senten_len),
                        dtype='int32')
        for i, sentences in enumerate(paras):
            for j, sent in enumerate(sentences):
                if j < self.max_senten_num:
                    wordTokens = text_to_word_sequence(sent)
                    k = 0
                    for _, word in enumerate(wordTokens):
                        if k < self.max_senten_len and word in tokenizer.word_index and tokenizer.word_index[
                                word] < self.max_features:
                            data[i, j, k] = tokenizer.word_index[word]
                            k = k + 1
        self.word_index = tokenizer.word_index
        if self.verbose == 1:
            print('Total %s unique tokens.' % len(self.word_index))
        labels = pd.get_dummies(self.categories)
        if self.verbose == 1:
            print('Shape of data tensor:', data.shape)
            print('Shape of labels tensor:', labels.shape)
        assert (len(self.classes) == labels.shape[1])
        assert (data.shape[0] == labels.shape[0])
        return data, labels

    def split_dataset(self):
        indices = np.arange(self.data.shape[0])
        np.random.shuffle(indices)
        self.data = self.data[indices]
        self.labels = self.labels.iloc[indices]
        nb_validation_samples = int(self.validation_split * self.data.shape[0])

        x_train = self.data[:-nb_validation_samples]
        y_train = self.labels[:-nb_validation_samples]
        x_val = self.data[-nb_validation_samples:]
        y_val = self.labels[-nb_validation_samples:]
        if self.verbose == 1:
            print(
                'Number of positive and negative reviews in traing and validation set'
            )
            print(y_train.columns.tolist())
            print(y_train.sum(axis=0).tolist())
            print(y_val.sum(axis=0).tolist())
        return x_train, y_train, x_val, y_val

    def get_model(self):
        """
        Returns the HAN model so that it can be used as a part of pipeline
        """
        return self.model

    def add_glove_model(self):
        """
        Read and save Pretrained Embedding model
        """
        embeddings_index = {}
        try:
            f = open(self.embedded_dir)
            for line in f:
                values = line.split()
                word = values[0]
                coefs = np.asarray(values[1:], dtype='float32')
                assert (coefs.shape[0] == self.embed_size)
                embeddings_index[word] = coefs
            f.close()
        except OSError:
            print('Embedded file does not found')
            exit()
        except AssertionError:
            print(
                "Embedding vector size does not match with given embedded size"
            )
        return embeddings_index

    def get_embedding_matrix(self):
        """
        Returns Embedding matrix
        """
        embedding_matrix = np.random.random(
            (len(self.word_index) + 1, self.embed_size))
        absent_words = 0
        for word, i in self.word_index.items():
            embedding_vector = self.embedding_index.get(word)
            if embedding_vector is not None:
                # words not found in embedding index will be all-zeros.
                embedding_matrix[i] = embedding_vector
            else:
                absent_words += 1
        if self.verbose == 1:
            print('Total absent words are', absent_words, 'which is',
                  "%0.2f" % (absent_words * 100 / len(self.word_index)),
                  '% of total words')
        return embedding_matrix

    def get_embedding_layer(self):
        """
        Returns Embedding layer
        """
        embedding_matrix = self.get_embedding_matrix()
        return Embedding(len(self.word_index) + 1,
                         self.embed_size,
                         weights=[embedding_matrix],
                         input_length=self.max_senten_len,
                         trainable=False)

    def set_model(self):
        """
        Set the HAN model according to the given hyperparameters
        """
        if self.hyperparameters['l2_regulizer'] is None:
            kernel_regularizer = None
        else:
            kernel_regularizer = regularizers.l2(
                self.hyperparameters['l2_regulizer'])
        if self.hyperparameters['dropout_regulizer'] is None:
            dropout_regularizer = 1
        else:
            dropout_regularizer = self.hyperparameters['dropout_regulizer']
        word_input = Input(shape=(self.max_senten_len, ), dtype='float32')
        word_sequences = self.get_embedding_layer()(word_input)
        word_lstm = Bidirectional(self.hyperparameters['rnn'](
            self.hyperparameters['rnn_units'],
            return_sequences=True,
            kernel_regularizer=kernel_regularizer))(word_sequences)
        word_dense = TimeDistributed(
            Dense(self.hyperparameters['dense_units'],
                  kernel_regularizer=kernel_regularizer))(word_lstm)
        word_att = AttentionWithContext()(word_dense)
        wordEncoder = Model(word_input, word_att)

        sent_input = Input(shape=(self.max_senten_num, self.max_senten_len),
                           dtype='float32')
        sent_encoder = TimeDistributed(wordEncoder)(sent_input)
        sent_lstm = Bidirectional(self.hyperparameters['rnn'](
            self.hyperparameters['rnn_units'],
            return_sequences=True,
            kernel_regularizer=kernel_regularizer))(sent_encoder)
        sent_dense = TimeDistributed(
            Dense(self.hyperparameters['dense_units'],
                  kernel_regularizer=kernel_regularizer))(sent_lstm)
        sent_att = Dropout(dropout_regularizer)(
            AttentionWithContext()(sent_dense))
        preds = Dense(len(self.classes))(sent_att)
        self.model = Model(sent_input, preds)
        self.model.compile(loss=self.hyperparameters['loss'],
                           optimizer=self.hyperparameters['optimizer'],
                           metrics=self.hyperparameters['metrics'])
        self.spark_model = SparkModel(self.model,
                                      frequency='epoch',
                                      mode='asynchronous')

    # Currently cannot plot learning curve
    def train_model(self,
                    rdd,
                    epochs,
                    batch_size,
                    verbose=1,
                    validation_split=0.1):
        """Training the model
        rdd  -- The actual data
        epochs -- Total number of epochs
        batch_size -- size of a batch
        verbose -- Whether or not we want verbose feedback
        validation_split -- What percentage of the data from the rdd is actually used as a validation set
        """

        self.spark_model.fit(self,
                             rdd,
                             epochs=epochs,
                             batch_size=batch_size,
                             verbose=verbose,
                             validation_split=validation_split)

    def predict(self, rdd):
        self.spark_model.predict(rdd)

    def plot_results(self):
        """
        Plotting learning curve of last trained model. 
        """
        # summarize history for accuracy
        plt.subplot(211)
        plt.plot(self.history.history['acc'])
        plt.plot(self.history.history['val_acc'])
        plt.title('model accuracy')
        plt.ylabel('accuracy')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')

        # summarize history for loss
        plt.subplot(212)
        plt.plot(self.history.history['val_loss'])
        plt.plot(self.history.history['loss'])
        plt.title('model loss')
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.show()
        time.sleep(10)
        plt.close()
Esempio n. 14
0
from elephas.spark_model import SparkModel
from elephas.utils.rdd_utils import to_simple_rdd
# Compile the model.
model_9.compile(optimizer='adam',
                loss='binary_crossentropy',
                metrics=['accuracy'])
# Build RDD from features and labels.
rdd = to_simple_rdd(sc, x_train, y_train)
# Initialize SparkModel from Keras model and Spark context.
spark_model = SparkModel(model_9,
                         frequency='epoch',
                         mode='asynchronous',
                         num_workers=3)
# Train the Spark model.
spark_model.fit(rdd, epochs=10, batch_size=32, verbose=1, validation_split=0.1)

score = spark_model.master_network.evaluate(x_test, y_test, verbose=1)
print('Test accuracy:', score)
"""### Predcit and evaluate Model"""
"""### Save Model"""

import json
#lets assume 'model' is main model
model_json = model_9.to_json()
with open("model_in_json.json", "w") as json_file:
    json.dump(model_json, json_file)

spark_model.save('resnet.h5')

# Load saved Model and using keras to predict
Esempio n. 15
0
# print('Test accuracy:', score[1])

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP')
# .setMaster('local[8]')
sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
# lp_rdd = to_labeled_point(sc, x_train, y_train, categorical=True)
rdd = to_simple_rdd(sc, x_train, y_train)

# Train Spark model
spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')

spark_model.fit(rdd,
                epochs=epochs,
                batch_size=batch_size,
                verbose=2,
                validation_split=0.1)

# Evaluate Spark model by evaluating the underlying model
score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

model_file = 'save/mlp.h5'
import os
if not os.path.exists("save/"):
    os.mkdir("save/")
model.save(model_file)
Esempio n. 16
0
labels = []
features = []

for message in consumer:
    #print(message.value)
    labels.append(message.value["label"])
    features.append(message.value["features"]["values"])

labeledpoints = np.array(labels, features)

model = Sequential()
model.add(Dense(2, input_dim=11))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer=SGD())

lp_rdd = to_simple_rdd(sc, features, labels, categorical=True)
spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')
spark_model.fit(lp_rdd,
                epochs=20,
                batch_size=32,
                verbose=0,
                validation_split=0.1)

spark_model.save("model.h5")
Esempio n. 17
0
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
x_train.shape

model = Sequential()
model.add(LSTM(205, return_sequences=False, input_shape=(x_train.shape[1], 1)))
model.add(Dense(1, activation='relu'))
model.compile(optimizer='adam', loss='mean_squared_error')
LOGGER.info('Model compiled')
rdd = to_simple_rdd(sc, x_train, y_train)
spark_model = SparkModel(model,
                         frequency='batch',
                         mode='hogwild',
                         num_workers=2)
LOGGER.info('Spark model created')
spark_model.fit(rdd, epochs=50, batch_size=500, validation_split=0.01)
LOGGER.info('Spark model trained')
LOGGER.info(model.summary())
test_data = scaled_data[training_data_len - 30:, :]
x_test = []
y_test = dataset[training_data_len:, :]

y_test = dataset[training_data_len:, :]
for i in range(30, len(test_data)):
    x_test.append(test_data[i - 30:i, 0])

x_test = np.array(x_test)

x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))

predictions = spark_model.predict(x_test)
Esempio n. 18
0
train_rdd = train_rdd.map(lambda x: (x[0], x[1]))
test_rdd = test_rdd.map(lambda x: (x[0], x[1]))


def convert_labels(labels):
    allowed = np.arange(10)
    one_hot = np.zeros(10)
    for l in labels:
        if l in allowed:
            one_hot[l] = 1
    return one_hot


train_rdd = train_rdd.map(lambda x: (np.array(x[0]), convert_labels(x[1])))
test_rdd = test_rdd.map(lambda x: (np.array(x[0]), convert_labels(x[1])))

# =========
# TRAINING
# =========
keras_model = create_model()
spark_model = SparkModel(keras_model, frequency='epoch', mode='asynchronous')
history = spark_model.fit(train_rdd, epochs=10, batch_size=32, verbose=2)

# =========
# TESTING
# =========
x_test = np.array(test_rdd.map(lambda x: x[0]).collect())
y_test = np.array(test_rdd.map(lambda x: x[1]).collect())
score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
print('Test accuracy:', score[1])
#function to convert label to one-hot encofing
def convert_one_hot(labels):
    one_hot_encoding = np.zeros(397)
    one_hot_encoding[labels] = 1
    return one_hot_encoding


#train test split
train_df, test_df = df.randomSplit([0.8, 0.2])

#transform spark dataframe to rdd format
train_data = train_df.rdd.map(
    lambda row: (to_array(row['image']), convert_one_hot(row['Label'])))
test_data = test_df.rdd.map(
    lambda row: (to_array(row['image']), convert_one_hot(row['Label'])))

#Training part
model = get_model(32)
spark_model = SparkModel(model, frequency='batch', mode='synchronous')
spark_model.fit(train_data,
                epochs=5,
                batch_size=32,
                verbose=1,
                validation_split=0.1)
#Model_Evaluating
x_test = np.array(test_data.map(lambda tuple: tuple[0]).collect())
y_test = np.array(test_data.map(lambda tuple: tuple[1]).collect())
accuracy = spark_model._master_network.evaluate(x_test, y_test)[1]
print('Accuracy is {}'.format(accuracy))