Esempio n. 1
0
    def segment_volume(self, pmaps):
        if self.ws_2D:
            # WS in 2D
            ws = self.ws_dt_2D(pmaps)
        else:
            # WS in 3D
            ws, _ = distance_transform_watershed(pmaps,
                                                 self.ws_threshold,
                                                 self.ws_sigma,
                                                 sigma_weights=self.ws_w_sigma,
                                                 min_size=self.ws_minsize)

        rag = compute_rag(ws, 1)
        # Computing edge features
        features = nrag.accumulateEdgeMeanAndLength(
            rag, pmaps, numberOfThreads=1)  # DO NOT CHANGE numberOfThreads
        probs = features[:, 0]  # mean edge prob
        edge_sizes = features[:, 1]
        # Prob -> edge costs
        costs = transform_probabilities_to_costs(probs,
                                                 edge_sizes=edge_sizes,
                                                 beta=self.beta)
        # Creating graph
        graph = nifty.graph.undirectedGraph(rag.numberOfNodes)
        graph.insertEdges(rag.uvIds())
        # Solving Multicut
        node_labels = multicut_kernighan_lin(graph, costs)
        return nifty.tools.take(node_labels, ws)
Esempio n. 2
0
def segment_volume_mc(pmaps,
                      threshold=0.4,
                      sigma=2.0,
                      beta=0.6,
                      ws=None,
                      sp_min_size=100):
    if ws is None:
        ws = distance_transform_watershed(pmaps,
                                          threshold,
                                          sigma,
                                          min_size=sp_min_size)[0]

    rag = compute_rag(ws, 1)
    features = nrag.accumulateEdgeMeanAndLength(rag, pmaps, numberOfThreads=1)
    probs = features[:, 0]  # mean edge prob
    edge_sizes = features[:, 1]
    costs = transform_probabilities_to_costs(probs,
                                             edge_sizes=edge_sizes,
                                             beta=beta)
    graph = nifty.graph.undirectedGraph(rag.numberOfNodes)
    graph.insertEdges(rag.uvIds())

    node_labels = multicut_kernighan_lin(graph, costs)

    return nifty.tools.take(node_labels, ws)
Esempio n. 3
0
def segment_mc(pred, seg, delta):
    rag = feats.compute_rag(seg)
    edge_probs = embed.edge_probabilities_from_embeddings(
        pred, seg, rag, delta)
    edge_sizes = feats.compute_boundary_mean_and_length(rag, pred[0])[:, 1]
    costs = mc.transform_probabilities_to_costs(edge_probs,
                                                edge_sizes=edge_sizes)
    mc_seg = mc.multicut_kernighan_lin(rag, costs)
    mc_seg = feats.project_node_labels_to_pixels(rag, mc_seg)
    return mc_seg
Esempio n. 4
0
def multicut_from_probas(segmentation, edges, edge_weights):
    rag = compute_rag(segmentation)
    edge_dict = dict(zip(list(map(tuple, edges)), edge_weights))
    costs = np.empty(len(edge_weights))
    for i, neighbors in enumerate(rag.uvIds()):
        if tuple(neighbors) in edge_dict:
            costs[i] = edge_dict[tuple(neighbors)]
        else:
            costs[i] = edge_dict[(neighbors[1], neighbors[0])]
    costs = transform_probabilities_to_costs(costs)
    node_labels = multicut_kernighan_lin(rag, costs)

    return project_node_labels_to_pixels(rag, node_labels).squeeze()
def supervoxel_merging(mem, sv, beta=0.5, verbose=False):

    rag = feats.compute_rag(sv)
    costs = feats.compute_boundary_features(rag, mem)[:, 0]

    edge_sizes = feats.compute_boundary_mean_and_length(rag, mem)[:, 1]
    costs = mc.transform_probabilities_to_costs(costs,
                                                edge_sizes=edge_sizes,
                                                beta=beta)

    node_labels = mc.multicut_kernighan_lin(rag, costs)
    segmentation = feats.project_node_labels_to_pixels(rag, node_labels)

    return segmentation
Esempio n. 6
0
affs = np.transpose(affs.cpu().numpy(), (1, 0, 2, 3))
gt_affs = np.transpose(gt_affs.cpu().numpy(), (1, 0, 2, 3))
seg = seg.cpu().numpy()
gt_seg = gt_seg.cpu().numpy()
boundary_input = np.mean(affs, axis=0)
gt_boundary_input = np.mean(gt_affs, axis=0)

rag = feats.compute_rag(seg)
# edges rag.uvIds() [[1, 2], ...]

costs = feats.compute_affinity_features(rag, affs, offsets)[:, 0]
gt_costs = calculate_gt_edge_costs(rag.uvIds(), seg.squeeze(),
                                   gt_seg.squeeze())

edge_sizes = feats.compute_boundary_mean_and_length(rag, boundary_input)[:, 1]
gt_edge_sizes = feats.compute_boundary_mean_and_length(rag,
                                                       gt_boundary_input)[:, 1]
costs = mc.transform_probabilities_to_costs(costs, edge_sizes=edge_sizes)
gt_costs = mc.transform_probabilities_to_costs(gt_costs, edge_sizes=edge_sizes)

node_labels = mc.multicut_kernighan_lin(rag, costs)
gt_node_labels = mc.multicut_kernighan_lin(rag, gt_costs)

segmentation = feats.project_node_labels_to_pixels(rag, node_labels)
gt_segmentation = feats.project_node_labels_to_pixels(rag, gt_node_labels)
plt.imshow(
    np.concatenate(
        (gt_segmentation.squeeze(), segmentation.squeeze(), seg.squeeze()),
        axis=1))
plt.show()
Esempio n. 7
0
def refine_seg(raw,
               seeds,
               restrict_to_seeds=True,
               restrict_to_bb=False,
               return_intermediates=False):
    pred = get_prediction(raw, cache=False)

    n_threads = 1
    # make watershed
    ws, _ = stacked_watershed(pred,
                              threshold=.5,
                              sigma_seeds=1.,
                              n_threads=n_threads)
    rag = compute_rag(ws, n_threads=n_threads)
    edge_feats = compute_boundary_mean_and_length(rag,
                                                  pred,
                                                  n_threads=n_threads)
    edge_feats, edge_sizes = edge_feats[:, 0], edge_feats[:, 1]
    z_edges = compute_z_edge_mask(rag, ws)
    edge_costs = compute_edge_costs(edge_feats,
                                    beta=.4,
                                    weighting_scheme='xyz',
                                    edge_sizes=edge_sizes,
                                    z_edge_mask=z_edges)

    # make seeds and map them to edges
    bb = tuple(
        slice(sh // 2 - ha // 2, sh // 2 + ha // 2)
        for sh, ha in zip(pred.shape, seeds.shape))

    seeds[seeds < 0] = 0
    seeds = vigra.analysis.labelVolumeWithBackground(seeds.astype('uint32'))
    seed_ids = np.unique(seeds)
    seed_mask = binary_erosion(seeds, iterations=2)

    seeds_new = seeds.copy()
    seeds_new[~seed_mask] = 0
    seed_ids_new = np.unique(seeds_new)
    for seed_id in seed_ids:
        if seed_id in seed_ids_new:
            continue
        seeds_new[seeds == seed_id] = seed_id

    seeds_full = np.zeros(pred.shape, dtype=seeds.dtype)
    seeds_full[bb] = seeds
    seeds = seeds_full

    seed_labels = compute_maximum_label_overlap(ws, seeds, ignore_zeros=True)

    edge_ids = rag.uvIds()
    labels_u = seed_labels[edge_ids[:, 0]]
    labels_v = seed_labels[edge_ids[:, 1]]

    seed_mask = np.logical_and(labels_u != 0, labels_v != 0)
    same_seed = np.logical_and(seed_mask, labels_u == labels_v)
    diff_seed = np.logical_and(seed_mask, labels_u != labels_v)

    max_att = edge_costs.max() + .1
    max_rep = edge_costs.min() - .1
    edge_costs[same_seed] = max_att
    edge_costs[diff_seed] = max_rep

    # run multicut
    node_labels = multicut_kernighan_lin(rag, edge_costs)
    if restrict_to_seeds:
        seed_nodes = np.unique(node_labels[seed_labels > 0])
        node_labels[~np.isin(node_labels, seed_nodes)] = 0
        vigra.analysis.relabelConsecutive(node_labels, out=node_labels)

    seg = project_node_labels_to_pixels(rag, node_labels, n_threads=n_threads)

    if restrict_to_bb:
        bb_mask = np.zeros(seg.shape, dtype='bool')
        bb_mask[bb] = 1
        seg[~bb_mask] = 0

    if return_intermediates:
        return pred, ws, seeds, seg
    else:
        return seg