def fit_dataloader(self, trn: DataLoader, criterion, optimizer, metric, logger: logging.Logger, history: History = None, gradient_accumulation=1, ratio_percentage=None, **kwargs): optimizer, scheduler = optimizer self.model.train() timer = CountdownTimer( history.num_training_steps( len(trn), gradient_accumulation=gradient_accumulation)) total_loss = 0 for batch in trn: output_dict = self.feed_batch(batch) loss = output_dict['loss'] if gradient_accumulation and gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += loss.item() if history.step(gradient_accumulation): self._step(optimizer, scheduler) timer.log(self.report_metrics(total_loss / (timer.current + 1)), ratio_percentage=ratio_percentage, logger=logger) del loss del output_dict return total_loss / max(timer.total, 1)
def fit_dataloader(self, trn: DataLoader, criterion, optimizer, metric, logger: logging.Logger, linear_scheduler=None, history: History = None, gradient_accumulation=1, **kwargs): self.model.train() timer = CountdownTimer(history.num_training_steps(len(trn), gradient_accumulation=gradient_accumulation)) total_loss = 0 self.reset_metrics(metric) for batch in trn: optimizer.zero_grad() output_dict = self.feed_batch(batch) self.update_metrics(batch, output_dict, metric) loss = output_dict['loss'] if gradient_accumulation and gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += loss.item() if history.step(gradient_accumulation): if self.config.grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.grad_norm) optimizer.step() if linear_scheduler: linear_scheduler.step() timer.log(self.report_metrics(total_loss / (timer.current + 1), metric), ratio_percentage=None, logger=logger) del loss return total_loss / timer.total
def fit_dataloader(self, trn: DataLoader, criterion, optimizer, metric, logger: logging.Logger, history: History, gradient_accumulation=1, grad_norm=None, transformer_grad_norm=None, teacher: Tagger = None, kd_criterion=None, temperature_scheduler=None, ratio_width=None, **kwargs): optimizer, scheduler = optimizer if teacher: scheduler, lambda_scheduler = scheduler else: lambda_scheduler = None self.model.train() timer = CountdownTimer( history.num_training_steps( len(trn), gradient_accumulation=gradient_accumulation)) total_loss = 0 for idx, batch in enumerate(trn): out, mask = self.feed_batch(batch) y = batch['tag_id'] loss = self.compute_loss(criterion, out, y, mask) if gradient_accumulation and gradient_accumulation > 1: loss /= gradient_accumulation if teacher: with torch.no_grad(): out_T, _ = teacher.feed_batch(batch) # noinspection PyNoneFunctionAssignment kd_loss = self.compute_distill_loss(kd_criterion, out, out_T, mask, temperature_scheduler) _lambda = float(lambda_scheduler) loss = _lambda * loss + (1 - _lambda) * kd_loss loss.backward() total_loss += loss.item() prediction = self.decode_output(out, mask, batch) self.update_metrics(metric, out, y, mask, batch, prediction) if history.step(gradient_accumulation): self._step(optimizer, scheduler, grad_norm, transformer_grad_norm, lambda_scheduler) report = f'loss: {total_loss / (idx + 1):.4f} {metric}' timer.log(report, logger=logger, ratio_percentage=False, ratio_width=ratio_width) del loss del out del mask
def fit_dataloader(self, trn: DataLoader, criterion, optimizer, metric: SpanMetric, logger: logging.Logger, history: History, gradient_accumulation=1, grad_norm=None, ratio_width=None, eval_trn=True, **kwargs): optimizer, scheduler = optimizer metric.reset() self.model.train() timer = CountdownTimer( history.num_training_steps( len(trn), gradient_accumulation=gradient_accumulation)) total_loss = 0 for idx, batch in enumerate(trn): out, mask = self.feed_batch(batch) y = batch['chart_id'] loss, span_probs = self.compute_loss(out, y, mask) if gradient_accumulation and gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += loss.item() if eval_trn: prediction = self.decode_output(out, mask, batch, span_probs) self.update_metrics(metric, batch, prediction) if history.step(gradient_accumulation): self._step(optimizer, scheduler, grad_norm) report = f'loss: {total_loss / (idx + 1):.4f} {metric}' if eval_trn \ else f'loss: {total_loss / (idx + 1):.4f}' timer.log(report, logger=logger, ratio_percentage=False, ratio_width=ratio_width) del loss del out del mask
def fit_dataloader(self, trn, optimizer, scheduler, criterion, epoch, logger, history: History, transformer_optimizer=None, transformer_scheduler=None, gradient_accumulation=1, eval_trn=False, **kwargs): self.model.train() timer = CountdownTimer(history.num_training_steps(len(trn), gradient_accumulation)) metric = self.build_metric(training=True) total_loss = 0 for idx, batch in enumerate(trn): optimizer.zero_grad() (s_arc, s_sib, s_rel), mask, puncts = self.feed_batch(batch) arcs, sibs, rels = batch['arc'], batch['sib_id'], batch['rel_id'] loss, s_arc = self.compute_loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask) if gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += loss.item() if eval_trn: arc_preds, rel_preds = self.decode(s_arc, s_sib, s_rel, mask) self.update_metric(arc_preds, rel_preds, arcs, rels, mask, puncts, metric) if history.step(gradient_accumulation): self._step(optimizer, scheduler, transformer_optimizer, transformer_scheduler) report = self._report(total_loss / (timer.current + 1), metric if eval_trn else None) lr = scheduler.get_last_lr()[0] report += f' lr: {lr:.4e}' timer.log(report, ratio_percentage=False, logger=logger) del loss
def fit_dataloader(self, trn, optimizer, scheduler, criterion, epoch, logger, history: History, transformer_optimizer=None, transformer_scheduler=None, gradient_accumulation=1, **kwargs): self.model.train() timer = CountdownTimer( history.num_training_steps(len(trn), gradient_accumulation)) metric = self.build_metric(training=True) total_loss = 0 for idx, batch in enumerate(trn): arc_scores, rel_scores, mask, puncts = self.feed_batch(batch) arcs, rels = batch['arc'], batch['rel_id'] loss = self.compute_loss(arc_scores, rel_scores, arcs, rels, mask, criterion, batch) if gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += loss.item() arc_preds, rel_preds = self.decode(arc_scores, rel_scores, mask, batch) self.update_metric(arc_preds, rel_preds, arcs, rels, mask, puncts, metric, batch) if history.step(gradient_accumulation): self._step(optimizer, scheduler, transformer_optimizer, transformer_scheduler) report = self._report(total_loss / (timer.current + 1), metric) timer.log(report, ratio_percentage=False, logger=logger) del loss
def fit_dataloader(self, trn: DataLoader, criterion, optimizer, metric, logger: logging.Logger, history: History, ratio_width=None, gradient_accumulation=1, encoder_grad_norm=None, decoder_grad_norm=None, patience=0.5, eval_trn=False, **kwargs): self.model.train() encoder_optimizer, encoder_scheduler, decoder_optimizers = optimizer timer = CountdownTimer(len(trn)) total_loss = 0 self.reset_metrics(metric) model = self.model_ encoder_parameters = model.encoder.parameters() decoder_parameters = model.decoders.parameters() for idx, (task_name, batch) in enumerate(trn): decoder_optimizer = decoder_optimizers.get(task_name, None) output_dict, _ = self.feed_batch(batch, task_name) loss = self.compute_loss(batch, output_dict[task_name]['output'], criterion[task_name], self.tasks[task_name]) if gradient_accumulation and gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += float(loss.item()) if history.step(gradient_accumulation): if self.config.get('grad_norm', None): clip_grad_norm(model, self.config.grad_norm) if encoder_grad_norm: torch.nn.utils.clip_grad_norm_(encoder_parameters, encoder_grad_norm) if decoder_grad_norm: torch.nn.utils.clip_grad_norm_(decoder_parameters, decoder_grad_norm) encoder_optimizer.step() encoder_optimizer.zero_grad() encoder_scheduler.step() if decoder_optimizer: if isinstance(decoder_optimizer, tuple): decoder_optimizer, decoder_scheduler = decoder_optimizer else: decoder_scheduler = None decoder_optimizer.step() decoder_optimizer.zero_grad() if decoder_scheduler: decoder_scheduler.step() if eval_trn: self.decode_output(output_dict, batch, task_name) self.update_metrics(batch, output_dict, metric, task_name) timer.log(self.report_metrics(total_loss / (timer.current + 1), metric if eval_trn else None), ratio_percentage=None, ratio_width=ratio_width, logger=logger) del loss del output_dict return total_loss / timer.total