Esempio n. 1
0
    def toLatLon(self, LatLon=None, unfalse=True):
        '''Convert this UPS coordinate to an (ellipsoidal) geodetic point.

           @keyword LatLon: Optional, ellipsoidal (sub-)class to return
                            the point (C{LatLon}) or C{None}.
           @keyword unfalse: Unfalse I{easting} and I{northing} if falsed
                             (C{bool}).

           @return: This UPS coordinate as (I{LatLon}) or 5-tuple
                    (C{lat, lon, datum, convergence, scale}) if
                    I{LatLon} is C{None}.

           @raise TypeError: If I{LatLon} is not ellipsoidal.

           @raise UPSError: Invalid meridional radius or H-value.
        '''
        if self._latlon:
            return self._latlon5(LatLon)

        E = self.datum.ellipsoid  # XXX vs LatLon.datum.ellipsoid

        f = self.falsed if unfalse else 0
        x = self.easting  - f
        y = self.northing - f

        r = hypot(x, y)
        t = (r / (2 * self.scale0 * E.a / E.es_c)) if r > 0 else EPS**2
        t = E.es_tauf((1 / t - t) * 0.5)
        if self.pole == 'N':
            a, b, c = atan(t), atan2(x, -y), 1
        else:
            a, b, c = -atan(t), atan2(x, y), -1

        a, b = degrees90(a), degrees180(b)
        if not self._band:
            self._band = _Band(a, b)
        if not self._hemisphere:
            self._hemisphere = _hemi(a)

        ll = _LLEB(a, b, datum=self._datum, name=self.name)
        ll._convergence = b * c  # gamma
        ll._scale = _scale(E, r, t) if r > 0 else self.scale0

        self._latlon = ll
        return self._latlon5(LatLon)
Esempio n. 2
0
def toOsgr(latlon, lon=None, datum=Datums.WGS84, Osgr=Osgr, name=''):
    '''Convert a lat-/longitude point to an OSGR coordinate.

       @param latlon: Latitude (C{degrees}) or an (ellipsoidal)
                      geodetic C{LatLon} point.
       @keyword lon: Optional longitude in degrees (scalar or C{None}).
       @keyword datum: Optional datum to convert (C{Datum}).
       @keyword Osgr: Optional (sub-)class to return the OSGR
                      coordinate (L{Osgr}) or C{None}.
       @keyword name: Optional I{Osgr} name (C{str}).

       @return: The OSGR coordinate (L{Osgr}) or 2-tuple (easting,
                northing) if I{Osgr} is C{None}.

       @raise TypeError: Non-ellipsoidal I{latlon} or I{datum}
                         conversion failed.

       @raise ValueError: Invalid I{latlon} or I{lon}.

       @example:

       >>> p = LatLon(52.65798, 1.71605)
       >>> r = toOsgr(p)  # TG 51409 13177
       >>> # for conversion of (historical) OSGB36 lat-/longitude:
       >>> r = toOsgr(52.65757, 1.71791, datum=Datums.OSGB36)
    '''
    if not isinstance(latlon, _LLEB):
        # XXX fix failing _LLEB.convertDatum()
        latlon = _LLEB(*parseDMS2(latlon, lon), datum=datum)
    elif lon is not None:
        raise ValueError('%s not %s: %r' % ('lon', None, lon))
    elif not name:  # use latlon.name
        name = _nameof(latlon) or name  # PYCHOK no effect

    E = _OSGB36.ellipsoid

    ll = _ll2datum(latlon, _OSGB36, 'latlon')
    a, b = map1(radians, ll.lat, ll.lon)

    sa, ca = sincos2(a)

    s = E.e2s2(sa)
    v = E.a * _F0 / sqrt(s)  # nu
    r = s / E.e12  # nu / rho == v / (v * E.e12 / s)

    x2 = r - 1  # η2
    ta = tan(a)

    ca3, ca5 = fpowers(ca, 5, 3)  # PYCHOK false!
    ta2, ta4 = fpowers(ta, 4, 2)  # PYCHOK false!

    vsa = v * sa
    I4 = (E.b * _F0 * _M(E.Mabcd, a) + _N0, (vsa / 2) * ca,
          (vsa / 24) * ca3 * fsum_(5, -ta2, 9 * x2),
          (vsa / 720) * ca5 * fsum_(61, ta4, -58 * ta2))

    V4 = (_E0, (v * ca), (v / 6) * ca3 * (r - ta2), (v / 120) * ca5 * fdot(
        (-18, 1, 14, -58), ta2, 5 + ta4, x2, ta2 * x2))

    d, d2, d3, d4, d5, d6 = fpowers(b - _B0, 6)  # PYCHOK false!
    n = fdot(I4, 1, d2, d4, d6)
    e = fdot(V4, 1, d, d3, d5)

    return (e, n) if Osgr is None else _xnamed(Osgr(e, n), name)
Esempio n. 3
0
    def toLatLon(self, LatLon=None, datum=Datums.WGS84):
        '''Convert this OSGR coordinate to an (ellipsoidal) geodetic
           point.

           I{Note formulation implemented here due to Thomas, Redfearn,
           etc. is as published by OS, but is inferior to Krüger as
           used by e.g. Karney 2011.}

           @keyword LatLon: Optional ellipsoidal (sub-)class to return
                            the point (C{LatLon}) or C{None}.
           @keyword datum: Optional datum to use (C{Datum}).

           @return: The geodetic point (I{LatLon}) or 3-tuple (C{degrees90},
                    C{degrees180}, I{datum}) if I{LatLon} is C{None}.

           @raise TypeError: If I{LatLon} is not ellipsoidal or if
                             I{datum} conversion failed.

           @example:

           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> g = Osgr(651409.903, 313177.270)
           >>> p = g.toLatLon(eV.LatLon)  # 52°39′28.723″N, 001°42′57.787″E
           >>> # to obtain (historical) OSGB36 lat-/longitude point
           >>> p = g.toLatLon(eV.LatLon, datum=Datums.OSGB36)  # 52°39′27.253″N, 001°43′04.518″E
        '''
        if self._latlon:
            return self._latlon3(LatLon, datum)

        E = _OSGB36.ellipsoid  # Airy130
        a_F0 = E.a * _F0
        b_F0 = E.b * _F0

        e, n = self._easting, self._northing
        n_N0 = n - _N0

        a, M = _A0, 0
        sa = Fsum(a)
        while True:
            t = n_N0 - M
            if t < _10um:
                break
            a = sa.fsum_(t / a_F0)
            M = b_F0 * _M(E.Mabcd, a)

        sa, ca = sincos2(a)

        s = E.e2s2(sa)
        v = a_F0 / sqrt(s)  # nu
        r = v * E.e12 / s  # rho

        vr = v / r  # == s / E.e12
        x2 = vr - 1  # η2
        ta = tan(a)

        v3, v5, v7 = fpowers(v, 7, 3)  # PYCHOK false!
        ta2, ta4, ta6 = fpowers(ta**2, 3)  # PYCHOK false!

        tar = ta / r
        V4 = (a, tar / (2 * v), tar / (24 * v3) * fdot(
            (1, 3, -9), 5 + x2, ta2, ta2 * x2), tar / (720 * v5) * fdot(
                (61, 90, 45), 1, ta2, ta4))

        csa = 1.0 / ca
        X5 = (_B0, csa / v, csa / (6 * v3) * fsum_(vr, ta, ta),
              csa / (120 * v5) * fdot(
                  (5, 28, 24), 1, ta2, ta4), csa / (5040 * v7) * fdot(
                      (61, 662, 1320, 720), ta, ta2, ta4, ta6))

        d, d2, d3, d4, d5, d6, d7 = fpowers(e - _E0, 7)  # PYCHOK false!
        a = fdot(V4, 1, -d2, d4, -d6)
        b = fdot(X5, 1, d, -d3, d5, -d7)

        self._latlon = _LLEB(degrees90(a),
                             degrees180(b),
                             datum=_OSGB36,
                             name=self.name)
        return self._latlon3(LatLon, datum)
Esempio n. 4
0
    def toLatLon(self, LatLon=None):
        '''Convert this UTM coordinate to an (ellipsoidal) geodetic point.

           @keyword LatLon: Optional, ellipsoidal (sub-)class to use
                            for the point (C{LatLon}) or C{None}.

           @return: This UTM coordinate as (I{LatLon}) or 5-tuple
                    (lat, lon, datum, convergence, scale) if I{LatLon}
                    is C{None}.

           @raise TypeError: If I{LatLon} is not ellipsoidal.

           @raise UTMError: Invalid meridional radius or H-value.

           @example:

           >>> u = Utm(31, 'N', 448251.795, 5411932.678)
           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> ll = u.toLatLon(eV.LatLon)  # 48°51′29.52″N, 002°17′40.20″E
        '''
        if self._latlon:
            return self._latlon5(LatLon)

        E = self._datum.ellipsoid  # XXX vs LatLon.datum.ellipsoid

        x = self._easting - _FalseEasting  # relative to central meridian
        y = self._northing
        if self._hemi == 'S':  # relative to equator
            y -= _FalseNorthing

        # from Karney 2011 Eq 15-22, 36
        A0 = _K0 * E.A
        if A0 < EPS:
            raise UTMError('%s invalid: %r' % ('meridional', E.A))
        x /= A0  # η eta
        y /= A0  # ξ ksi

        Ks = _Kseries(E.BetaKs, x, y)  # Krüger series
        y = -Ks.ys(-y)  # ξ'
        x = -Ks.xs(-x)  # η'

        shx = sinh(x)
        cy, sy = cos(y), sin(y)

        H = hypot(shx, cy)
        if H < EPS:
            raise UTMError('%s invalid: %r' % ('H', H))

        T = t0 = sy / H  # τʹ
        q = 1.0 / E.e12
        d = 1
        sd = Fsum(T)
        # toggles on +/-1.12e-16 eg. 31 N 400000 5000000
        while abs(d) > EPS:  # 1e-12
            h = hypot1(T)
            s = sinh(E.e * atanh(E.e * T / h))
            t = T * hypot1(s) - s * h
            d = (t0 - t) / hypot1(t) * (q + T**2) / h
            T = sd.fsum_(d)  # τi

        a = atan(T)  # lat
        b = atan2(shx, cy) + radians(_cmlon(self._zone))
        ll = _LLEB(degrees90(a),
                   degrees180(b),
                   datum=self._datum,
                   name=self.name)

        # convergence: Karney 2011 Eq 26, 27
        p = -Ks.ps(-1)
        q = Ks.qs(0)
        ll._convergence = degrees(atan(tan(y) * tanh(x)) + atan2(q, p))

        # scale: Karney 2011 Eq 28
        ll._scale = E.e2s(sin(a)) * hypot1(T) * H * (A0 / E.a / hypot(p, q))

        self._latlon = ll
        return self._latlon5(LatLon)
Esempio n. 5
0
    def _tdef(self, lat):
        '''(INTERNAL) Compute t(lat).
        '''
        return max(0, tanPI_2_2(-lat) / self._pdef(lat))

    def _xdef(self, t_x):
        '''(INTERNAL) Compute x(t_x).
        '''
        return PI_2 - 2 * atan(t_x)  # XXX + self._lat0


Conics = _NamedEnum('Conics', Conic)  #: Registered conics.
Conics._assert(  # <https://SpatialReference.org/ref/sr-org/...>
    #   AsLb   = Conic(_LLEB(-14.2666667, 170, datum=Datums.NAD27), 0, 0, E0=500000, N0=0, name='AsLb', auth='EPSG:2155'),  # American Samoa ... SP=1 !
    Be08Lb=Conic(_LLEB(50.7978150, 4.359215833, datum=Datums.GRS80),
                 49.833333,
                 51.166667,
                 E0=649328.0,
                 N0=665262.0,
                 name='Be08Lb',
                 auth='EPSG:9802'),  # Belgium
    Be72Lb=Conic(_LLEB(90, 4.3674867, datum=Datums.NAD83),
                 49.8333339,
                 51.1666672,
                 E0=150000.013,
                 N0=5400088.438,
                 name='Be72Lb',
                 auth='EPSG:31370'),  # Belgium
    Fr93Lb=Conic(_LLEB(46.5, 3, datum=Datums.WGS84),
                 49,
Esempio n. 6
0
    def toLatLon(self, LatLon=None, eps=EPS, unfalse=True):
        '''Convert this UTM coordinate to an (ellipsoidal) geodetic point.

           @keyword LatLon: Optional, ellipsoidal (sub-)class to return
                            the point (C{LatLon}) or C{None}.
           @keyword eps: Optional convergence limit, L{EPS} or above
                         (C{float}).
           @keyword unfalse: Unfalse I{easting} and I{northing} if falsed
                             (C{bool}).

           @return: This UTM coordinate as (I{LatLon}) or 5-tuple
                    (lat, lon, datum, convergence, scale) if I{LatLon}
                    is C{None}.

           @raise TypeError: If I{LatLon} is not ellipsoidal.

           @raise UTMError: Invalid meridional radius or H-value.

           @example:

           >>> u = Utm(31, 'N', 448251.795, 5411932.678)
           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> ll = u.toLatLon(eV.LatLon)  # 48°51′29.52″N, 002°17′40.20″E
        '''
        if eps < EPS:
            eps = EPS  # less doesn't converge

        if self._latlon and self._latlon_eps == eps:
            return self._latlon5(LatLon)

        E = self._datum.ellipsoid  # XXX vs LatLon.datum.ellipsoid

        x = self._easting
        y = self._northing
        if unfalse and self._falsed:
            x -= _FalseEasting  # relative to central meridian
            if self._hemisphere == 'S':  # relative to equator
                y -= _FalseNorthing

        # from Karney 2011 Eq 15-22, 36
        A0 = _K0 * E.A
        if A0 < EPS:
            raise UTMError('%s invalid: %r' % ('meridional', E.A))
        x /= A0  # η eta
        y /= A0  # ξ ksi

        Ks = _Kseries(E.BetaKs, x, y)  # Krüger series
        y = -Ks.ys(-y)  # ξ'
        x = -Ks.xs(-x)  # η'

        shx = sinh(x)
        sy, cy = sincos2(y)

        H = hypot(shx, cy)
        if H < EPS:
            raise UTMError('%s invalid: %r' % ('H', H))

        d = 1.0 + eps
        q = 1.0 / E.e12
        T = t0 = sy / H  # τʹ
        sd = Fsum(T)
        while abs(d) > eps:
            h = hypot1(T)
            s = sinh(E.e * atanh(E.e * T / h))
            t = T * hypot1(s) - s * h
            d = (t0 - t) / hypot1(t) * ((q + T**2) / h)
            T, d = sd.fsum2_(d)  # τi, (τi - τi-1)

        a = atan(T)  # lat
        b = atan2(shx, cy) + radians(_cmlon(self._zone))
        ll = _LLEB(degrees90(a),
                   degrees180(b),
                   datum=self._datum,
                   name=self.name)

        # convergence: Karney 2011 Eq 26, 27
        p = -Ks.ps(-1)
        q = Ks.qs(0)
        ll._convergence = degrees(atan(tan(y) * tanh(x)) + atan2(q, p))

        # scale: Karney 2011 Eq 28
        ll._scale = E.e2s(sin(a)) * hypot1(T) * H * (A0 / E.a / hypot(p, q))

        self._latlon, self._latlon_eps = ll, eps
        return self._latlon5(LatLon)