Esempio n. 1
0
def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
        is_distributed(bool): whether to use distributed training method

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
            use_distillation = config.get('use_distillation')
            feeds = create_feeds(config.image_shape, use_mix=use_mix)
            dataloader = create_dataloader(feeds.values())
            out = create_model(config.ARCHITECTURE, feeds['image'],
                               config.classes_num, is_train)
            fetchs = create_fetchs(out,
                                   feeds,
                                   config.ARCHITECTURE,
                                   config.topk,
                                   config.classes_num,
                                   epsilon=config.get('ls_epsilon'),
                                   use_mix=use_mix,
                                   use_distillation=use_distillation)
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
                fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))

                optimizer = mixed_precision_optimizer(config, optimizer)
                if is_distributed:
                    optimizer = dist_optimizer(config, optimizer)
                optimizer.minimize(fetchs['loss'][0])
                if config.get('use_ema'):

                    global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter(
                    )
                    ema = ExponentialMovingAverage(config.get('ema_decay'),
                                                   thres_steps=global_steps)
                    ema.update()
                    return dataloader, fetchs, ema

    return dataloader, fetchs
Esempio n. 2
0
    def __init__(self, config):
        super(BiDAF, self).__init__()
        with self.init_scope():
            self.word_emb = L.EmbedID(config.word_vocab_size,
                                      config.word_emb_dim,
                                      initialW=config.word_emb,
                                      ignore_label=-1)
            self.char_emb = L.EmbedID(config.char_vocab_size,
                                      config.char_emb_dim,
                                      ignore_label=-1)
            self.char_conv = CharacterConvolution(config)

            self.highway_network = HighwayNetwork(config)

            self.word_enc_dim = config.word_emb_dim + config.char_out_dim
            self.dropout_rate = config.dropout_rate

            self.context_bilstm = BiLSTM(self.word_enc_dim, config.hidden_size,
                                         self.dropout_rate, config)  #in=200

            self.attention_layer = AttentionFlow(config)

            self.modeling_bilstm_g0 = BiLSTM(self.word_enc_dim * 4,
                                             config.hidden_size,
                                             self.dropout_rate,
                                             config)  #in=800
            self.modeling_bilstm_g1 = BiLSTM(config.hidden_size * 2,
                                             config.hidden_size,
                                             self.dropout_rate,
                                             config)  #in=200
            self.modeling_bilstm_g2 = BiLSTM(self.word_enc_dim * 7,
                                             config.hidden_size,
                                             self.dropout_rate,
                                             config)  #in=1400

            self.y_logits_layer = L.Linear(None, 1)
            self.y2_logits_layer = L.Linear(None, 1)

        self.char_out_dim = config.char_out_dim
        self.skip_word_in_result = config.skip_word_in_result

        self.no_ema = config.no_ema
        if not self.no_ema:
            self.ema = ExponentialMovingAverage(config.decay_rate)
            self.ema_init = True

        self.multi_gpu = len(config.gpu) > 1
Esempio n. 3
0
 def _create_ema_updater(self):
     self.ema_updater = ExponentialMovingAverage(self.ema_model.parameters(), self.cfg.ema_decay, 
             use_num_updates=self.cfg.use_num_updates, rampup_steps=self.cfg.rampup_steps,
             rampup_decay=self.cfg.rampup_decay)
        train_indices, val_indices = train_test_split(np.arange(len(meta_parameters_dictionary['train_labels'])), test_size = 0.1)
        if early:
            early_test_indices = []
            for j in range(len(meta_parameters_dictionary['test_labels'])):
                if meta_parameters_dictionary['test_labels_stage'][j,0]==1 or meta_parameters_dictionary['test_labels_stage'][j,1]==1:
                    early_test_indices.append(j)
        test_indices = range(len(meta_parameters_dictionary['test_labels']))
        meta_parameters_dictionary['train_indices']=train_indices
        meta_parameters_dictionary['val_indices']=val_indices
        meta_parameters_dictionary['test_indices'] = np.array(test_indices)
        training_generator = data(meta_parameters_dictionary,batch_size,True,False)
        val_generator = data(meta_parameters_dictionary,batch_size,False,True)
        test_generator = data(meta_parameters_dictionary,batch_size,False,False)
        csv_logger = CSVLogger(os.path.join(LOGDIR,'training_{}.log'.format(test_cohort)))
        lrate = CyclicLR(base_lr=0.001,max_lr= 0.01,step_size=100,mode='triangular2')
        checkpointer = ExponentialMovingAverage(filepath=checkpoint_dir+'cyclic_{}_{}.h5'.format(test_cohort,i),save_best_only=True, save_weights_only=True,custom_objects={'cox_regression_loss':cox_regression_loss},verbose=1)
        lr_monitor = LambdaCallback(on_epoch_begin=lambda epoch, logs:print(tf.eval(model.optimizer.lr)))
        lr_callback = ReduceLROnPlateau(monitor='val_loss',factor=0.5,patience=2, min_lr = 0.00001)
        model = get_model(cube_size, clinical_features_size,kernel_size = (3,3,3))
        history = model.fit_generator(training_generator, verbose =2, epochs=steps, callbacks=[lr_callback,lr_monitor,lrate,csv_logger,checkpointer],validation_data= val_generator,workers=8, use_multiprocessing=True, shuffle=True)
        print(i)
        try:
            model.load_weights(checkpoint_dir+'cyclic_{}_{}.h5'.format(test_cohort,i))
        except OSError:
            print('Could not find checkpoint:'+ checkpoint_dir+'cyclic_{}_{}.h5'.format(test_cohort,i))
            continue

        #tensorboard_callback = TensorBoard(log_dir=LOGDIR, histogram_freq=0, write_graph=True)
        #early_stopping_monitor = EarlyStopping(monitor='val_loss', patience=10)
        #weights = model.get_weights()
        #start_time = time.time()
Esempio n. 5
0
 def setup(self):
     self.ema = ExponentialMovingAverage()
Esempio n. 6
0
class TestEMADefaultAlpha():
    def setup(self):
        self.ema = ExponentialMovingAverage()

    def test_no_input(self):
        assert self.ema.get() is None

    def test_one_zero(self):
        self.ema.put(0)

        assert self.ema.get() == 0

    def test_one_one(self):
        self.ema.put(1)

        assert self.ema.get() == 1

    def test_three_values(self):
        self.ema.put(1)
        self.ema.put(2)
        self.ema.put(3)

        assert self.ema.get() == 2.25

    def test_three_values_list(self):
        self.ema.put([1, 2, 3])

        assert self.ema.get() == 2.25

    def test_ten_values_list(self):
        self.ema.put([-1, -1, -1, -1, -1, -1, -1, -1, -1, 1])

        assert self.ema.get() == 0.0

    def test_get_halfway(self):
        self.ema.put([-1, -1, -1, -1, -1])
        assert self.ema.get() == -1.0

        self.ema.put([-1, -1, -1, -1, 1])
        assert self.ema.get() == 0.0
Esempio n. 7
0
class TestEMALowAlpha():
    def setup(self):
        self.ema = ExponentialMovingAverage(alpha=0.2)

    def test_no_input(self):
        assert self.ema.get() is None

    def test_one_zero(self):
        self.ema.put(0)

        assert self.ema.get() == 0

    def test_one_one(self):
        self.ema.put(1)

        assert self.ema.get() == 1

    def test_three_values(self):
        self.ema.put(1)
        self.ema.put(2)
        self.ema.put(3)

        assert self.ema.get() == approx(1.56)

    def test_ten_values(self):
        self.ema.put([-1, -1, -1, -1, -1, -1, -1, -1, -1, 1])

        assert self.ema.get() == approx(-0.6)