Esempio n. 1
0
    def forward(ctx, xyz1, xyz2, eps, iters):

        batchsize, n, _ = xyz1.size()
        _, m, _ = xyz2.size()

        assert(n == m)
        assert(xyz1.size()[0] == xyz2.size()[0])
        assert(n % 1024 == 0)
        assert(batchsize <= 512)

        xyz1 = xyz1.contiguous().float().cuda()
        xyz2 = xyz2.contiguous().float().cuda()
        dist = torch.zeros(batchsize, n, device='cuda').contiguous()
        assignment = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous() - 1
        assignment_inv = torch.zeros(batchsize, m, device='cuda', dtype=torch.int32).contiguous() - 1
        price = torch.zeros(batchsize, m, device='cuda').contiguous()
        bid = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous()
        bid_increments = torch.zeros(batchsize, n, device='cuda').contiguous()
        max_increments = torch.zeros(batchsize, m, device='cuda').contiguous()
        unass_idx = torch.zeros(batchsize * n, device='cuda', dtype=torch.int32).contiguous()
        max_idx = torch.zeros(batchsize * m, device='cuda', dtype=torch.int32).contiguous()
        unass_cnt = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
        unass_cnt_sum = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
        cnt_tmp = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()

        emd.forward(xyz1, xyz2, dist, assignment, price, assignment_inv, bid, bid_increments, max_increments, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp, max_idx, eps, iters)

        ctx.save_for_backward(xyz1, xyz2, assignment)
        return dist, assignment
Esempio n. 2
0
 def forward(ctx, xyz1, xyz2):
     batchsize, n, _ = xyz1.size()
     _, m, _ = xyz2.size()
     match = torch.zeros(batchsize, n, m).cuda()
     cost = torch.zeros(batchsize, ).cuda()
     temp = torch.zeros(batchsize, 2 * (m + n)).cuda()
     emd.forward(xyz1, xyz2, match, cost, temp)
     ctx.save_for_backward(xyz1, xyz2, match)
     return cost