def testClusterToTourModel(self):
     data = cp.cluster_to_tour_model(None, None) #for a negative test case
     self.assertTrue(not data) #checking that the code doesn't crash on an empty dataset
     data = cp.read_data(size=100)#this and the following lines form the positive test case
     data, bins = cp.remove_noise(data, 300)
     n, labels, data = cp.cluster(data, len(bins))
     tour_dict = cp.main()
     self.assertTrue(len(tour_dict) <= n)
    def testClusterToTourModel(self):
	# Test to make sure it doesn't crash on a empty dataset
	data = cp.cluster_to_tour_model(None, None)
	self.assertFalse(data)
	
	# Test with the real dataset
	data = cp.read_data(uuid=self.testUUID)
	data, bins = cp.remove_noise(data, self.RADIUS)
	n, labels, data = cp.cluster(data, len(bins))
	tour_dict = cp.main(uuid=self.testUUID)
	self.assertTrue(len(tour_dict) <= n)
    def testClusterToTourModel(self):
        # Test to make sure it doesn't crash on a empty dataset
        data = cp.cluster_to_tour_model(None, None)
        self.assertFalse(data)

        # Test with the real dataset
        data = cp.read_data(uuid=self.testUUID)
        data, bins = cp.remove_noise(data, self.RADIUS)
        n, labels, data = cp.cluster(data, len(bins))
        tour_dict = cp.main(uuid=self.testUUID)
        self.assertTrue(len(tour_dict) <= n)
 def testClusterToTourModelNew(self):
     
     data = cp.cluster_to_tour_model(None, None, old=False) #for a negative test case
     self.assertTrue(not data) #checking that the code doesn't crash on an empty dataset
     user_name = "test1"
     data = cp.read_data(uuid=self.testUUID, size=100, old=False) #this and the following lines form the positive test case
     data, bins = cp.remove_noise(data, 300, old=False)
     n, labels, data = cp.cluster(data, len(bins), old=False)
     tour_dict = cp.main(uuid=user_name, old=False)
     print 'n = %s | len(tour_dict) = %s' % (n, len(tour_dict))
     self.assertTrue(len(tour_dict) <= n)