def ltsm_gen_v2(net,
                seq_len,
                file_name,
                sampling_idx=0,
                note_pos=0,
                n_steps=100,
                hidden_size=178,
                num_layers=1,
                time_step=0.05,
                changing_note=False,
                note_stuck=False,
                remove_extra_rests=True):
    """
    Uses the trained LSTM to generate new notes and saves the output to a MIDI file
    The difference between this and the previous one is that we only use one note as input
    And then keep generating notes until we have a sequence of notes of length = seq_len
    Once we do, we start appending the generated notes to the final output
    :param net: Trained LSTM
    :param seq_len: Length of input sequence
    :param file_name: Name to be given to the generated MIDI file
    :param sampling_idx: File to get the input note from, out of the pieces used to train the LSTM
    :param note_pos: Position of the sampled input note in the source piece, default to the first note
    :param n_steps: Number of vectors to generate
    :param hidden_size: Hidden size of the trained LSTM
    :param num_layers: Number of layers of the trained LSTM
    :param time_step: Vector duration. Should be the same as the one on get_right_hand()
    :param changing_note: To sample from different sources at some point of the generation
    and add this new note to the sequence. This is done in case the generation gets stuck
    repeating a particular sequence over and over.
    :param note_stuck: To change the note if the generation gets stuck playing the same
    note over and over.
    :param remove_extra_rests: If the generation outputs a lot of rests in between, use this
    :return: None. Just saves the generated music as a .mid file
    """

    notes = []  # Will contain a sequence of the predicted notes
    x = notes_encoded[sampling_idx][note_pos:note_pos +
                                    1, :, :]  # First note of the piece
    notes.append(x.cpu().numpy())  # Saves the first note
    h_state = torch.zeros(num_layers, 1, hidden_size).float().cuda()
    c_state = torch.zeros(num_layers, 1, hidden_size).float().cuda()
    print_first = True
    change_note = False
    for _ in range(n_steps):
        chosen = False  # To account for when no dimension's probability is bigger than 0.9
        y_pred, h_c_state = net(x, (h_state, c_state))
        h_state, c_state = h_c_state[0].data, h_c_state[1].data
        y_pred = y_pred.data
        y_pred = y_pred[
            -1]  # We only care about the last predicted note (next note after last note of input sequence)
        choose = torch.zeros(
            (1, 1, 178))  # Coverts the probabilities to the actual note vector
        y_pred_left = y_pred[:, :89]
        for idx in range(89):
            if y_pred_left[:, idx] > 0.9:
                choose[:, :, idx] = 1
                chosen = True
        if y_pred_left[:,
                       -1] >= 0.7:  # We add a hold condition, in case the probability
            choose[:, :,
                   88] = 1  # of having a hold is close to the one of having the pitch
        if not chosen:
            if print_first:
                print(
                    "\nPrinting out the maximum prob of all notes for a time step",
                    "when this maximum prob is less than 0.9")
                print_first = False
            pred_note_idx = np.argmax(y_pred_left.cpu())
            choose[:, :, pred_note_idx] = 1
            if pred_note_idx != 87:  # No holds for rests
                if y_pred_left[:,
                               pred_note_idx] - y_pred_left[:,
                                                            -1] <= 0.2:  # Hold condition
                    choose[:, :, 88] = 1
            print(_, "left", y_pred_left[:, np.argmax(y_pred_left.cpu())]
                  )  # Maximum probability out of all components
        y_pred_right = y_pred[:, 89:]
        for idx in range(89):
            if y_pred_right[:, idx] > 0.9:
                choose[:, :, idx + 89] = 1
                chosen = True
        if y_pred_right[:, -1] >= 0.7:
            choose[:, :, -1] = 1
        if not chosen:
            if print_first:
                print(
                    "\nPrinting out the maximum prob of all notes for a time step",
                    "when this maximum prob is less than 0.9")
                print_first = False
            pred_note_idx = np.argmax(y_pred_right.cpu())
            choose[:, :, pred_note_idx + 89] = 1
            if pred_note_idx != 87:  # No holds for rests
                if y_pred_right[:,
                                pred_note_idx] - y_pred_right[:,
                                                              -1] <= 0.2:  # Hold condition
                    choose[:, :, -1] = 1
            # Maximum probability out of all components
            print(_, "right", y_pred_right[:, np.argmax(y_pred_right.cpu())])

        # If the number of input sequences is shorter than the expected one
        if x.shape[
                0] < seq_len:  # We keep adding the predicted notes to this input
            x_new = torch.empty((x.shape[0] + 1, x.shape[1], x.shape[2]))
            for i in range(x_new.shape[0] - 1):
                x_new[i, :, :] = x[i, :, :]
            x_new[-1, :, :] = y_pred
            x = x_new.cuda()
            notes.append(choose)
        else:  # If we already have enough sequences
            x_new = torch.empty(x.shape)  # Removes the first note
            for idx, nt in enumerate(x[1:]):  # of the current sequence
                x_new[idx] = nt  # And appends the predicted note to the
            x_new[-1] = choose  # input of sequences
            x = x_new.cuda()
            notes.append(choose)

        # Condition so that the generation does not
        # get stuck on a particular sequence
        if changing_note:
            if _ % seq_len == 0:
                if sampling_idx >= len(notes_encoded):
                    sampling_idx = 0
                    change_note = True
                st = randint(1, 100)
                if change_note:
                    x_new[-1] = notes_encoded[sampling_idx][st, :, :]
                    change_note = False
                else:
                    x_new[-1] = notes_encoded[sampling_idx][0, :, :]
                sampling_idx += 1
                x = x_new.cuda()

        # Condition so that the generation does not
        # get stuck on a particular note
        if _ > 8 and note_stuck:
            if (notes[-1][:, :,
                          89:] == notes[-2][:, :,
                                            89:]).sum(2)[0][0].numpy() in [
                                                88, 89
                                            ]:
                if (notes[-1][:, :,
                              89:] == notes[-3][:, :,
                                                89:]).sum(2)[0][0].numpy() in [
                                                    88, 89
                                                ]:
                    if (notes[-1][:, :, 89:] == notes[-4][:, :, 89:]
                        ).sum(2)[0][0].numpy() in [88, 89]:
                        if (notes[-1][:, :, 89:] == notes[-5][:, :, 89:]
                            ).sum(2)[0][0].numpy() in [88, 89]:
                            if (notes[-1][:, :, 89:] == notes[-6][:, :, 89:]
                                ).sum(2)[0][0].numpy() in [88, 89]:
                                for m in range(5):
                                    notes.pop(-1)
                                if sampling_idx >= len(notes_encoded):
                                    sampling_idx = 0
                                x_new[-1] = notes_encoded[sampling_idx][
                                    randint(1, 100), :, :]
                                x = x_new.cuda()
                                sampling_idx += 1

    # Gets the notes into the correct NumPy array shape
    gen_notes = np.empty((len(notes) - seq_len + 1,
                          178))  # Doesn't use the first predicted notes
    for idx, nt in enumerate(
            notes[seq_len - 1:]):  # Because at first this will be inaccurate
        gen_notes[idx] = nt[0]

    # Decodes the generated music
    gen_midi_left = decode(get_tempo_dim_back(gen_notes[:, :89], 74),
                           time_step=time_step)
    # Gets rid of too many rests
    if remove_extra_rests:
        stream_left = ms.stream.Stream()
        for idx, nt in enumerate(gen_midi_left):
            if type(nt) == ms.note.Rest and idx < len(gen_midi_left) - 5:
                if nt.duration.quarterLength > 4 * time_step:
                    print("Removing rest")
                    continue
                if type(gen_midi_left[idx + 4]) == ms.note.Rest:
                    print("Removing rest")
                    continue
                stream_left.append(nt)
            else:
                stream_left.append(nt)
    else:
        stream_left = gen_midi_left
    # Same thing for right hand
    gen_midi_right = decode(get_tempo_dim_back(gen_notes[:, 89:], 74),
                            time_step=time_step)
    if remove_extra_rests:
        stream_right = ms.stream.Stream()
        for idx, nt in enumerate(gen_midi_right):
            if type(nt) == ms.note.Rest and idx < len(gen_midi_right) - 5:
                if nt.duration.quarterLength > 4 * time_step:
                    print("Removing rest")
                    continue
                if type(gen_midi_right[idx + 4]) == ms.note.Rest:
                    print("Removing rest")
                    continue
                stream_right.append(nt)
            else:
                stream_right.append(nt)
    else:
        stream_right = gen_midi_right

    # Saves both hands combined as a MIDI file
    combine(stream_left, stream_right, file_name + ".mid")
Esempio n. 2
0
        else:
            next_location_index = permutation[position_index + 1]

        location_from = points[location_index]
        location_to = points[next_location_index]

        draw_edge(location_from, location_to)

    plt.xlim(0, 1)
    plt.ylim(0, 1)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.show()


for index, test_batch in enumerate(test_loader):
    if index > 0:
        break

    random_sample = random.randint(0, 10)
    test_x = batch[0][random_sample]

    pred = model.forward(test_x)
    decoded_pred = decode(pred.detach().numpy()).astype('int')

    test_x = test_x.detach().numpy().reshape(-1, 2)

    draw_route(decoded_pred, test_x)

# Save model
torch.save(model.state_dict(), './models/v1.0.py')
Esempio n. 3
0
def ltsm_gen(net,
             seq_len,
             file_name,
             sampling_idx=0,
             sequence_start=0,
             n_steps=100,
             hidden_size=178,
             time_step=0.05,
             changing_note=False,
             note_stuck=False,
             remove_extra_rests=True):
    """
    Uses the trained LSTM to generate new notes and saves the output to a MIDI file
    This approach uses a whole sequence of notes of one of the pieces we used to train
    the network, with length seq_len, which should be the same as the one used when training
    :param net: Trained LSTM
    :param seq_len: Length of input sequence
    :param file_name: Name to be given to the generated MIDI file
    :param sampling_idx: File to get the input sequence from, out of the pieces used to train the LSTM
    :param sequence_start: Index of the starting sequence, default to 0
    :param n_steps: Number of vectors to generate
    :param hidden_size: Hidden size of the trained LSTM
    :param time_step: Vector duration. Should be the same as the one on get_right_hand()
    :param changing_note: To sample from different sources at some point of the generation
    and add this new note to the sequence. This is done in case the generation gets stuck
    repeating a particular sequence over and over.
    :param note_stuck: To change the note if the generation gets stuck playing the same
    note over and over.
    :param remove_extra_rests: If the generation outputs a lot of rests in between, use this
    :return: None. Just saves the generated music as a .mid file
    """

    notes = []  # Will contain a sequence of the predicted notes
    x = notes_encoded[sampling_idx][sequence_start:sequence_start +
                                    seq_len]  # Uses the input sequence
    for nt in x:  # To start predicting. This will be later removed from
        notes.append(nt.cpu().numpy())  # the final output
    h_state = torch.zeros(1, 1, hidden_size).float().cuda()
    c_state = torch.zeros(1, 1, hidden_size).float().cuda()
    print_first = True  # To print out a message if every component of a
    # predicted vector is less than 0.9
    change_note = False

    for _ in range(n_steps):
        chosen = False  # To account for when no dimension's probability is bigger than 0.9
        y_pred, h_c_state = net(
            x, (h_state, c_state))  # Predicts the next notes for all
        h_state, c_state = h_c_state[0].data, h_c_state[
            1].data  # the notes in the input sequence
        y_pred = y_pred.data  # We only care about the last predicted note
        y_pred = y_pred[-1]  # (next note after last note of input sequence)
        choose = torch.zeros(
            (1, 1, 178))  # Coverts the probabilities to the actual note vector
        y_pred_left = y_pred[:, :89]
        for idx in range(89):
            if y_pred_left[:, idx] > 0.9:
                choose[:, :, idx] = 1
                chosen = True
        if y_pred_left[:,
                       -1] >= 0.7:  # We add a hold condition, in case the probability
            choose[:, :,
                   88] = 1  # of having a hold is close to the one of having the pitch
        if not chosen:
            if print_first:
                print(
                    "\nPrinting out the maximum prob of all notes for a time step",
                    "when this maximum prob is less than 0.9")
                print_first = False
            pred_note_idx = np.argmax(y_pred_left.cpu())
            choose[:, :, pred_note_idx] = 1
            if pred_note_idx != 87:  # No holds for rests
                if y_pred_left[:,
                               pred_note_idx] - y_pred_left[:,
                                                            -1] <= 0.2:  # Hold condition
                    choose[:, :, 88] = 1
            print(_, "left", y_pred_left[:, np.argmax(y_pred_left.cpu())]
                  )  # Maximum probability out of all components
        y_pred_right = y_pred[:, 89:]
        for idx in range(89):
            if y_pred_right[:, idx] > 0.9:
                choose[:, :, idx + 89] = 1
                chosen = True
        if y_pred_right[:, -1] >= 0.7:
            choose[:, :, -1] = 1
        if not chosen:
            if print_first:
                print(
                    "\nPrinting out the maximum prob of all notes for a time step",
                    "when this maximum prob is less than 0.9")
                print_first = False
            pred_note_idx = np.argmax(y_pred_right.cpu())
            choose[:, :, pred_note_idx + 89] = 1
            if pred_note_idx != 87:  # No holds for rests
                if y_pred_right[:,
                                pred_note_idx] - y_pred_right[:,
                                                              -1] <= 0.2:  # Hold condition
                    choose[:, :, -1] = 1
            print(_, "right", y_pred_right[:, np.argmax(y_pred_right.cpu())]
                  )  # Maximum probability out of all components
        x_new = torch.empty(x.shape)  # Uses the output of the last time_step
        for idx, nt in enumerate(x[1:]):  # As the input for the next time_step
            x_new[
                idx] = nt  # So the new sequence will be the same past sequence minus the first note
        x_new[-1] = choose
        x = x_new.cuda(
        )  # We will use this new sequence to predict in the next iteration the next note
        notes.append(choose.cpu().numpy())  # Saves the predicted note

        # Condition so that the generation does not
        # get stuck on a particular sequence
        if changing_note:
            if _ % seq_len == 0:
                if sampling_idx >= len(notes_encoded):
                    sampling_idx = 0
                    change_note = True
                st = randint(1, 100)
                if change_note:
                    x_new[-1] = notes_encoded[sampling_idx][st, :, :]
                    change_note = False
                else:
                    x_new[-1] = notes_encoded[sampling_idx][0, :, :]
                sampling_idx += 1
                x = x_new.cuda()

        # Condition so that the generation does not
        # get stuck on a particular note
        if _ > 6 and note_stuck:
            if (notes[-1][:, :,
                          89:] == notes[-2][:, :,
                                            89:]).sum(2)[0][0].numpy() in [
                                                88, 89
                                            ]:
                if (notes[-1][:, :,
                              89:] == notes[-3][:, :,
                                                89:]).sum(2)[0][0].numpy() in [
                                                    88, 89
                                                ]:
                    if (notes[-1][:, :, 89:] == notes[-4][:, :, 89:]
                        ).sum(2)[0][0].numpy() in [88, 89]:
                        if (notes[-1][:, :, 89:] == notes[-5][:, :, 89:]
                            ).sum(2)[0][0].numpy() in [88, 89]:
                            if (notes[-1][:, :, 89:] == notes[-6][:, :, 89:]
                                ).sum(2)[0][0].numpy() in [88, 89]:
                                for m in range(5):
                                    notes.pop(-1)
                                if sampling_idx >= len(notes_encoded):
                                    sampling_idx = 0
                                x_new[-1] = notes_encoded[sampling_idx][
                                    randint(1, 100), :, :]
                                x = x_new.cuda()
                                sampling_idx += 1

    # Gets the notes into the correct NumPy array shape
    gen_notes = np.empty((len(notes) - seq_len + 1,
                          178))  # Doesn't use the first predicted notes
    for idx, nt in enumerate(
            notes[seq_len -
                  1:]):  # Because these were sampled from the training data
        gen_notes[idx] = nt[0]

    # Decodes the generated music
    gen_midi_left = decode(get_tempo_dim_back(gen_notes[:, :89], 74),
                           time_step=time_step)
    # Gets rid of too many rests
    if remove_extra_rests:
        stream_left = ms.stream.Stream()
        for idx, nt in enumerate(gen_midi_left):
            if type(nt) == ms.note.Rest and idx < len(gen_midi_left) - 5:
                if nt.duration.quarterLength > 4 * time_step:
                    print("Removing rest")
                    continue
                if type(gen_midi_left[idx + 4]) == ms.note.Rest:
                    print("Removing rest")
                    continue
                stream_left.append(nt)
            else:
                stream_left.append(nt)
    else:
        stream_left = gen_midi_left
    # Same thing for right hand
    gen_midi_right = decode(get_tempo_dim_back(gen_notes[:, 89:], 74),
                            time_step=time_step)
    if remove_extra_rests:
        stream_right = ms.stream.Stream()
        for idx, nt in enumerate(gen_midi_right):
            if type(nt) == ms.note.Rest and idx < len(gen_midi_right) - 5:
                if nt.duration.quarterLength > 4 * time_step:
                    print("Removing rest")
                    continue
                if type(gen_midi_right[idx + 4]) == ms.note.Rest:
                    print("Removing rest")
                    continue
                stream_right.append(nt)
            else:
                stream_right.append(nt)
    else:
        stream_right = gen_midi_right

    # Saves both hands combined as a MIDI file
    combine(stream_left, stream_right, file_name + ".mid")
Esempio n. 4
0
import numpy as np
import crossover as c
import encoder_decoder as ed

channels_list = []  # List of channels names
channels_ROI = []  # List of channels of roi to be transformed into %
chrom_list = []  # population list
lu_list = []  # lower and upper list

budget = int(input("Enter the Marketing budget in thousands : \n"))
Nofchannels = int(input("Enter The number of marketing channels : \n"))

for _ in range(Nofchannels):
    c_name, c_value = input("Enter name and ROI of each channel : \n").split(
        " ")
    channels_list.append(c_name)
    channels_ROI.append(c_value)

for __ in range(Nofchannels):
    l, u = input(
        "Enter the lower (k) and upper bounds (%) of investment in each channel:\n(enter x if there is no bound)\n"
    ).split(" ")
    if (l != "x"):
        lu_list.append((float((float(l) * 1000) / (budget * 1000) * 100), u))
    else:
        lu_list.append((l, u))

print(ed.encode(channels_list))
print(ed.decode(3))