Esempio n. 1
0
    def __init__(self, config, embedding, vocab, loss_criterion):
        super().__init__()
        self.encoder = EncoderRNN(config.hidden_size, embedding, config.encoder_n_layers, config.dropout)
        self.decoder = LuongAttnDecoderRNN(config.attn_model, embedding, config.hidden_size,
                                  vocab.num_words, config.decoder_n_layers, config.dropout)

        self.config = config
        self.bos_id = vocab.bos_id
        self.loss_criterion = loss_criterion
Esempio n. 2
0
    def __init__(self, hparams):
        super(Tacotron2, self).__init__()
        self.style_switch_prob = hparams.style_switch_prob
        self.contents_switch_prob = hparams.contents_switch_prob
        self.mask_padding = hparams.mask_padding
        self.fp16_run = hparams.fp16_run
        self.n_mel_channels = hparams.n_mel_channels
        self.n_frames_per_step = hparams.n_frames_per_step
        self.embedding = nn.Embedding(
            hparams.n_symbols, hparams.symbols_embedding_dim)
        std = sqrt(2.0 / (hparams.n_symbols + hparams.symbols_embedding_dim))
        val = sqrt(3.0) * std  # uniform bounds for std
        self.embedding.weight.data.uniform_(-val, val)

        self.contents_enc = EncoderRNN(hparams.n_mel_channels, hparams.symbols_embedding_dim//2, 2, emb_type='raw')
        self.style_enc = EncoderRNN(hparams.n_mel_channels, hparams.style_embedding_dim, 2)
        self.linear_enc = nn.Linear(hparams.symbols_embedding_dim, hparams.symbols_embedding_dim, bias=False)

        self.encoder = Encoder(hparams)
        self.decoder = Decoder(hparams)
        self.postnet = Postnet(hparams)
def run_evaluation1(corpus_dir, save_dir, datafile, config_file):
    config = Config.from_json_file(config_file)
    save_dir = config.save_dir
    # set checkpoint to load from; set to None if starting from scratch
    load_filename = os.path.join(
        save_dir, config.model_name, config.corpus_name,
        '{}-{}_{}'.format(config.encoder_n_layers, config.decoder_n_layers,
                          config.hidden_size), "last_checkpoint.tar")

    # if loading on the same machine the model trained on
    checkpoint = torch.load(load_filename,
                            map_location=lambda storage, loc: storage)
    # if loading a model trained on gpu to cpu
    # checkpoint = torch.load(load_filename, map_location=torch.device('cpu'))
    encoder_sd = checkpoint["en"]
    decoder_sd = checkpoint["de"]
    encoder_optimizer_sd = checkpoint["en_opt"]
    decoder_optimizer_sd = checkpoint["de_opt"]
    embedding_sd = checkpoint["embedding"]

    vocab = BPEVocab.from_files(config.bpe_vocab_path, config.bpe_codes_path)
    print("Building encoder and decoder ...")
    # initialize word embeddings
    embedding = nn.Embedding(len(vocab), config.hidden_size)
    embedding.load_state_dict(embedding_sd)

    # initialize encoder and decoder models
    encoder = EncoderRNN(config.hidden_size, embedding,
                         config.encoder_n_layers, config.dropout)
    decoder = LuongAttnDecoderRNN(config.attn_model, embedding,
                                  config.hidden_size, len(vocab),
                                  config.decoder_n_layers, config.dropout)

    encoder.load_state_dict(encoder_sd)
    decoder.load_state_dict(decoder_sd)

    # Set dropout layers to eval mode

    encoder.eval()
    decoder.eval()

    # Initialize search module
    searcher = GreedySearchDecoder(encoder, decoder)

    # Begin chatting (uncomment and run the following line to begin)
    evaluate_input1(encoder, decoder, searcher, vocab)
Esempio n. 4
0
                   iter / n_iters * 100, print_loss_avg))

        if iter % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0

    showPlot(plot_losses)


def showPlot(points):
    plt.figure()
    fig, ax = plt.subplots()
    # this locator puts ticks at regular intervals
    loc = ticker.MultipleLocator(base=0.2)
    ax.yaxis.set_major_locator(loc)
    plt.plot(points)


input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words,
                               dropout_p=0.1).to(device)

trainIters(encoder1, attn_decoder1, 75000, print_every=5000)
#trainIters(encoder1, attn_decoder1, n_iters=100, print_every=10, plot_every=10)

torch.save(encoder1.state_dict(), 'models/encoder1.bin')
torch.save(attn_decoder1.state_dict(), 'models/attn_decoder1.bin')
Esempio n. 5
0
def run_training1(config_file, load_filename=""):
    # read data
    config = Config.from_json_file(config_file)
    save_dir = config.save_dir
    datafile = config.datafile

    vocab = BPEVocab.from_files(config.bpe_vocab_path, config.bpe_codes_path)

    if load_filename:
        # if loading on the same machine the model trained on
        checkpoint = torch.load(load_filename)
        # if loading a model trained on gpu to cpu
        # checkpoint = torch.load(load_filename, map_location=torch.device('cpu'))
        encoder_sd = checkpoint["en"]
        decoder_sd = checkpoint["de"]
        encoder_optimizer_sd = checkpoint["en_opt"]
        decoder_optimizer_sd = checkpoint["de_opt"]
        embedding_sd = checkpoint["embedding"]
        vocab.__dict__ = checkpoint["voc_dict"]

    dataset = CornellMovieDialogDataset(config, paths=[datafile], vocab=vocab)
    #todo try shuffle=False
    #todo the batched input tensor to the model is transosed! is there anything wrong?
    data_loader = DataLoader(dataset,
                             batch_size=config.batch_size,
                             shuffle=True,
                             collate_fn=dataset.collate_func,
                             drop_last=True)

    num_tokens = len(vocab)

    print("Building encoder and decoder ...")
    # initialize word embeddings
    embedding = nn.Embedding(num_tokens, config.hidden_size).to(config.device)
    if load_filename:
        embedding.load_state_dict(embedding_sd)

    # initialize encoder and decoder models
    encoder = EncoderRNN(config.hidden_size, embedding,
                         config.encoder_n_layers,
                         config.dropout).to(config.device)
    decoder = LuongAttnDecoderRNN(config.attn_model, embedding,
                                  config.hidden_size, num_tokens,
                                  config.decoder_n_layers,
                                  config.dropout).to(config.device)

    if load_filename:
        encoder.load_state_dict(encoder_sd)
        decoder.load_state_dict(decoder_sd)

    print("Models built and ready to go.")

    #####################################
    # ensure dropout layers are in train mode
    encoder.train()
    decoder.train()

    # initilize optimizers
    print("building optimizers")
    encoder_optimizer = optim.Adam(encoder.parameters(),
                                   lr=config.learning_rate)
    decoder_optimizer = optim.Adam(decoder.parameters(),
                                   lr=config.learning_rate *
                                   config.decoder_learning_ratio)

    if load_filename:
        encoder_optimizer.load_state_dict(encoder_optimizer_sd)
        decoder_optimizer.load_state_dict(decoder_optimizer_sd)

    #for epoch in range(config.n_epochs):
    training_iters1(data_loader,
                    config,
                    vocab,
                    encoder,
                    decoder,
                    encoder_optimizer,
                    decoder_optimizer,
                    embedding,
                    save_dir,
                    load_filename,
                    epoch=1)
Esempio n. 6
0
def run_training(config_file, load_filename=""):
    # read data

    config = Config.from_json_file(config_file)
    save_dir = config.save_dir
    datafile = config.datafile
    corpus_dir = config.corpus_dir

    prepare_data = PrepareData(min_count=config.MIN_COUNT,
                               max_length=config.MAX_LENGTH)
    vocab, pairs = prepare_data.load_prepare_data(corpus_dir, datafile,
                                                  save_dir)

    # set checkpoint to load from; set to None if starting from scratch
    # load_filename = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size),
    #                            '{}_checkpoint.tar'.format(checkpoint_iter))

    if load_filename:
        # if loading on the same machine the model trained on
        checkpoint = torch.load(load_filename)
        # if loading a model trained on gpu to cpu
        # checkpoint = torch.load(load_filename, map_location=torch.device('cpu'))
        encoder_sd = checkpoint["en"]
        decoder_sd = checkpoint["de"]
        encoder_optimizer_sd = checkpoint["en_opt"]
        decoder_optimizer_sd = checkpoint["de_opt"]
        embedding_sd = checkpoint["embedding"]
        vocab.__dict__ = checkpoint["voc_dict"]

    print("Building encoder and decoder ...")
    # initialize word embeddings
    embedding = nn.Embedding(vocab.num_words,
                             config.hidden_size).to(config.device)
    if load_filename:
        embedding.load_state_dict(embedding_sd)

    # initialize encoder and decoder models
    encoder = EncoderRNN(config.hidden_size, embedding,
                         config.encoder_n_layers,
                         config.dropout).to(config.device)
    decoder = LuongAttnDecoderRNN(config.attn_model, embedding,
                                  config.hidden_size, vocab.num_words,
                                  config.decoder_n_layers,
                                  config.dropout).to(config.device)

    if load_filename:
        encoder.load_state_dict(encoder_sd)
        decoder.load_state_dict(decoder_sd)

    print("Models built and ready to go.")

    #####################################
    # ensure dropout layers are in train mode
    encoder.train()
    decoder.train()

    # initilize optimizers
    print("building optimizers")
    encoder_optimizer = optim.Adam(encoder.parameters(),
                                   lr=config.learning_rate)
    decoder_optimizer = optim.Adam(decoder.parameters(),
                                   lr=config.learning_rate *
                                   config.decoder_learning_ratio)

    if load_filename:
        encoder_optimizer.load_state_dict(encoder_optimizer_sd)
        decoder_optimizer.load_state_dict(decoder_optimizer_sd)

    # run training iterations
    training_iters(config, vocab, pairs, encoder, decoder, encoder_optimizer,
                   decoder_optimizer, embedding, save_dir, load_filename)
Esempio n. 7
0
def train_iters(path,
                n_iters,
                input_texts,
                target_texts,
                input_encoder,
                target_encoder,
                device,
                max_length,
                print_every=100,
                plot_every=200,
                learning_rate=0.0001,
                momentum=0.99):
    start = time.time()
    plot_losses = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total = 0  # Reset every plot_every

    latent_dim = 512  # Latent dimensionality of the encoding space.

    encoder_path = path + "encoder.pt"
    decoder_path = path + "decoder.pt"

    encoder = torch.load(encoder_path) if Path(encoder_path).exists(
    ) else EncoderRNN(input_encoder.max, latent_dim).to(device)
    decoder = torch.load(decoder_path) if Path(decoder_path).exists(
    ) else SimpleAttnDecoderRNN(latent_dim, target_encoder.max).to(device)
    # decoder = torch.load(decoder_path) if Path(decoder_path).exists() else AttnDecoderRNN(latent_dim, target_encoder.max, max_length).to(device)

    # encoder_optimizer = torch.optim.SGD(encoder.parameters(), lr=learning_rate, momentum=momentum, nesterov=True)
    # decoder_optimizer = torch.optim.SGD(decoder.parameters(), lr=learning_rate, momentum=momentum, nesterov=True)
    encoder_optimizer = torch.optim.Adam(encoder.parameters(),
                                         betas=(momentum, 0.999),
                                         lr=learning_rate)
    decoder_optimizer = torch.optim.Adam(decoder.parameters(),
                                         betas=(momentum, 0.999),
                                         lr=learning_rate)
    criterion = torch.nn.NLLLoss()

    for epoch in range(0, 5):
        print("epoch: " + str(epoch) + '\n')
        for iter in range(0, n_iters + 1):
            input_tensor = input_encoder.get_encoding_for_sentence_single_tensor(
                input_texts[iter])
            target_tensor = target_encoder.get_encoding_for_sentence(
                target_texts[iter])

            loss = train(input_tensor, target_tensor, encoder, decoder,
                         encoder_optimizer, decoder_optimizer, criterion,
                         device, max_length)
            print_loss_total += loss
            plot_loss_total += loss

            if iter % print_every == 0:
                print_loss_avg = print_loss_total / print_every
                print_loss_total = 0
                print('%s (%d %d%%) %.4f' %
                      (timeSince(start, iter / n_iters), iter,
                       iter / n_iters * 100, print_loss_avg))

            if iter % plot_every == 0:
                plot_loss_avg = plot_loss_total / plot_every
                plot_losses.append(plot_loss_avg)
                plot_loss_total = 0

        torch.save(encoder, encoder_path)
        torch.save(decoder, decoder_path)

    torch.save(encoder_optimizer.state_dict(), path + "encoder_optimizer.pt")
    torch.save(decoder_optimizer.state_dict(), path + "decoder_optimizer.pt")

    showPlot(plot_losses)