Esempio n. 1
0
def visualizePowerModel(path):
    # Plot the measured values and the model
    pw_model = powerModel(path)
    freqs = get_range(args.freqs) if args.freqs else pw_model.frequencies
    thrs = get_range(args.thrs) if args.thrs else pw_model.threads
    est = pw_model.estimate(freqs, thrs)
    plotData.setProps(xlabel="Frequencies (GHz)",
                      ylabel="Active Cores",
                      zlabel="Power (W)")
    plotData.plot3D(x=pw_model.frequencies,
                    y=pw_model.threads,
                    z=pw_model.powers,
                    legend='Measurements')
    plotData.plot3D(x=freqs, y=thrs, z=est, points=False, legend='Model')
    plotData.plotShow(showLegend=True)
Esempio n. 2
0
    def update_data(val):
        d = int(val)
        plotData.setProps(xlabel='Frequencies (GHz)',
                          ylabel='Active threads',
                          zlabel='Time (S)',
                          title=title_)
        df_ = df[df['in_cat'] == d]
        df_pred_ = df_pred[df_pred['in_cat'] == d]
        df_ = df_[df_['thr'].isin(df_pred_['thr'].unique())]

        if not df_.empty:
            plotData.plot3D(x=df_['freq'].unique(),
                            y=df_['thr'].unique(),
                            z=df_['time'].values)
        plotData.plot3D(x=df_pred_['freq'].unique(),
                        y=df_pred_['thr'].unique(),
                        z=df_pred_['time'].values,
                        points=False)
Esempio n. 3
0
def figures(appname=None, energy=True, in_cmp=3):
    from energyOptimal import plotData
    for app, title in zip(parsec_models, titles):
        if (appname and not appname in app) or (not app):
            continue
        pw_model = powerModel('data/ipmi_2-32_cpuload.pw')
        perf_model = performanceModel('data/dataframes/' + app,
                                      'data/svr/' + app)
        en_model = energyModel(pw_model,
                               perf_model,
                               freq_range_=np.arange(1.2e6, 2.3e6, 0.1e6) /
                               1e6)

        plotData.setProps(xlabel='Frequencies (GHz)',
                          ylabel='Active threads',
                          zlabel='Energy (kJ)' if energy else 'Time (s)',
                          title=title)
        df_ = perf_model.dataFrame[perf_model.dataFrame['in_cat'] ==
                                   in_cmp].sort_values(['freq', 'thr'])
        df_pred_ = en_model.dataFrame[en_model.dataFrame['in_cat'] ==
                                      in_cmp].sort_values(['freq', 'thr'])

        # df_pred_= df_pred_[df_pred_['thr'].isin(list(range(8,33,2)))]
        # df_= df_[df_['thr'].isin(list(range(8,33,2)))]
        plotData.plot3D(x=df_['freq'].unique(),
                        y=df_['thr'].unique(),
                        z=df_['energy'].values /
                        1e3 if energy else df_['time'].values,
                        points=True,
                        legend='Measurements')

        plotData.plot3D(x=df_pred_['freq'].unique(),
                        y=df_pred_['thr'].unique(),
                        z=df_pred_['energy_model'].values /
                        1e3 if energy else df_pred_['time'].values,
                        points=False,
                        legend='Model')
        plotData.ax.view_init(30, 60)
        if 'HPL' in app:
            plotData.ax.set_zlim(0, 15)
        aux = 'energy' if energy else 'time'
        plotData.savePlot('fotos/{}/{}.png'.format(aux, app), showLegend=True)
Esempio n. 4
0
def update_data(val):
    d = int(val)
    plotData.setProps(xlabel='Frequencies (GHz)',
                      ylabel='Active threads',
                      zlabel='Energy (KJ)',
                      title=args.title)
    df_pred_ = df_pred[df_pred['in_cat'] == d]
    df_ = df[df['in_cat'] == d]

    df_ = df_[df_['thr'].isin(df_pred_['thr'].unique())]
    plotData.ax.view_init(30, 60)

    if not df_.empty:
        plotData.plot3D(x=df_['freq'].unique(),
                        y=df_['thr'].unique(),
                        z=df_['energy'].values / 1e3,
                        points=True,
                        legend='Measurements')
    plotData.plot3D(x=df_pred_['freq'].unique(),
                    y=df_pred_['thr'].unique(),
                    z=df_pred_['energy_model'].values / 1e3,
                    points=False,
                    legend='Model')
Esempio n. 5
0
                          freqs_filter=freq,
                          thrs_filter=thr)
        pw_model.fit()

        f_est, p_est = pw_model_full.frequencies, pw_model_full.threads
        pws_est = pw_model.estimate(f_est, p_est)

        df_est = pw_model.estimate(f_est, p_est, dataFrame=True)
        df_full = pw_model_full.get_Dataframe()
        df = pd.merge(df_est, df_full)
        df['diff'] = np.abs((df['pw_est'] - df['pw']) / df['pw'] * 100)

        print("Max error from all measured points {} ".format(
            df['diff'].max()))

        plotData.setProps(xlabel='Frequency', ylabel='Threads', zlabel='Power')
        plotData.plot3D(pw_model_full.frequencies,
                        pw_model_full.threads,
                        pw_model_full.powers,
                        color_='blue',
                        legend='Measurement')
        plotData.plot3D(pw_model.frequencies,
                        pw_model.threads,
                        pw_model.powers,
                        color_='red',
                        legend='Chosen points')
        plotData.plot3D(f_est,
                        p_est,
                        pws_est,
                        points=False,
                        legend='Estimative')