def __init__(self, checkpoint, config): self.config = config # Initialize the network self.model = models.MuZeroNetwork(self.config) self.model.set_weights(checkpoint["weights"]) self.model.eval()
def __init__(self, initial_checkpoint, config): self.config = config # Fix random generator seed numpy.random.seed(self.config.seed) torch.manual_seed(self.config.seed) # Initialize the network self.model = models.MuZeroNetwork(self.config) self.model.set_weights(initial_checkpoint["weights"]) self.model.to(torch.device("cuda" if self.config.reanalyse_on_gpu else "cpu")) self.model.eval() self.num_reanalysed_games = initial_checkpoint["num_reanalysed_games"]
def __init__(self, initial_checkpoint, Game, config, seed): self.config = config self.game = Game(seed) # Fix random generator seed numpy.random.seed(seed) torch.manual_seed(seed) # Initialize the network self.model = models.MuZeroNetwork(self.config) self.model.set_weights(initial_checkpoint["weights"]) self.model.to( torch.device("cuda" if torch.cuda.is_available() else "cpu")) self.model.eval()
def __init__(self, initial_checkpoint, config): self.config = config # Fix random generator seed numpy.random.seed(self.config.seed) torch.manual_seed(self.config.seed) # Initialize the network self.model = models.MuZeroNetwork(self.config) self.model.set_weights(copy.deepcopy(initial_checkpoint["weights"])) self.model.to(torch.device("cuda" if self.config.train_on_gpu else "cpu")) self.model.train() self.training_step = initial_checkpoint["training_step"] if "cuda" not in str(next(self.model.parameters()).device): print("You are not training on GPU.\n") # Initialize the optimizer if self.config.optimizer == "SGD": self.optimizer = torch.optim.SGD( self.model.parameters(), lr=self.config.lr_init, momentum=self.config.momentum, weight_decay=self.config.weight_decay, ) elif self.config.optimizer == "Adam": self.optimizer = torch.optim.Adam( self.model.parameters(), lr=self.config.lr_init, weight_decay=self.config.weight_decay, ) else: raise NotImplementedError( f"{self.config.optimizer} is not implemented. You can change the optimizer manually in trainer.py." ) if initial_checkpoint["optimizer_state"] is not None: print("Loading optimizer...\n") self.optimizer.load_state_dict( copy.deepcopy(initial_checkpoint["optimizer_state"]) )
def get_initial_weights(self, config): model = models.MuZeroNetwork(config) weigths = model.get_weights() summary = str(model).replace("\n", " \n\n") return weigths, summary