def setup_app(): app = Application(name="composite_atlas", modules=["composite"]) atlas = app.add("atlas").add(app.registry.isaac.composite.CompositeAtlas) atlas.config["cask"] = "packages/composite/tests/waypoints" pub_node = app.add("pub") pub = pub_node.add(app.registry.isaac.composite.CompositePublisher, name="CompositePublisher") pub.config.tick_period = "20Hz" pub.config.atlas = "atlas/CompositeAtlas" pub.config.path = ["cart", "dolly"] return app, pub
def setup_app(): app = Application(name="follow_path", modules=["composite"]) atlas = app.add("atlas").add(app.registry.isaac.composite.CompositeAtlas) atlas.config["cask"] = "packages/composite/tests/waypoints" pub_node = app.add("pub") pub = pub_node.add(app.registry.isaac.composite.CompositePublisher, name="CompositePublisher") pub.config.tick_period = "20Hz" pub.config.atlas = "atlas/CompositeAtlas" pub.config.path = ["cart", "dolly"] follow_node = app.add("follow") follow = follow_node.add(app.registry.isaac.composite.FollowPath) follow.config.tick_period = "10Hz" follow.config.wait_time = 0.05 follow_node.add(app.registry.isaac.composite.CompositeMetric) app.connect(pub, "path", follow, "path") app.connect(follow, "goal", follow, "state") return app, follow_node
def main(args): app = Application(name="detect_net_inference") # Load subgraph and get interface node app.load("packages/detect_net/apps/detect_net_inference.subgraph.json", prefix="detect_net_inference") detect_net_inferface = app.nodes["detect_net_inference.subgraph"]\ .components["interface"] # Load configuration app.load(args.config) # Configure detection model detection_model = app.nodes["detect_net_inference.tensor_r_t_inference"]\ .components["isaac.ml.TensorRTInference"] if args.detection_model_file_path is not None: detection_model.config.model_file_path = args.detection_model_file_path if args.etlt_password is not None: detection_model.config.etlt_password = args.etlt_password # Configure detection decoder decoder = app.nodes["detect_net_inference.detection_decoder"]\ .components["isaac.detect_net.DetectNetDecoder"] decoder.config.output_scale = [args.rows, args.cols] if args.confidence_threshold is not None: decoder.config.confidence_threshold = args.confidence_threshold if args.nms_threshold is not None: decoder.config.non_maximum_suppression_threshold = args.nms_threshold if args.mode == 'cask': # Load replay subgraph and configure interface node app.load("packages/record_replay/apps/replay.subgraph.json", prefix="replay") replay_interface = app.nodes["replay.interface"].components["output"] replay_interface.config.cask_directory = args.cask_directory # Connect the output of the replay subgraph to the detection subgraph app.connect(replay_interface, "color", detect_net_inferface, "image") elif args.mode == 'sim': # Load simulation subgraph and get interface node app.load("packages/navsim/apps/navsim_training.subgraph.json",\ prefix="simulation") simulation_interface = app.nodes["simulation.interface"].components[ "output"] # Connect the output of the simulation with user-specified channel to the detection subgraph app.connect(simulation_interface, args.image_channel, detect_net_inferface, "image") elif args.mode == 'realsense': app.load_module('realsense') # Create and configure realsense camera codelet camera = app.add("camera").add(app.registry.isaac.RealsenseCamera) camera.config.rows = args.rows camera.config.cols = args.cols camera.config.color_framerate = args.fps camera.config.depth_framerate = args.fps camera.config.enable_ir_stereo = False # Connect the output of the camera node to the detection subgraph app.connect(camera, "color", detect_net_inferface, "image") elif args.mode == 'v4l': app.load_module('sensors:v4l2_camera') # Create and configure V4L camera codelet camera = app.add("camera").add(app.registry.isaac.V4L2Camera) camera.config.device_id = 0 camera.config.rows = args.rows camera.config.cols = args.cols camera.config.rate_hz = args.fps # Connect the output of the camera node to the detection subgraph app.connect(camera, "frame", detect_net_inferface, "image") elif args.mode == 'image': app.load_module('message_generators') # Create feeder node feeder = app.add("feeder").add( app.registry.isaac.message_generators.ImageLoader) feeder.config.color_glob_pattern = args.image_directory feeder.config.tick_period = "1Hz" feeder.config.focal_length = [args.focal_length, args.focal_length] feeder.config.optical_center = [ args.optical_center_rows, args.optical_center_cols ] feeder.config.distortion_coefficients = [0.01, 0.01, 0.01, 0.01, 0.01] # Connect the output of the image feeder node to the detection subgraph app.connect(feeder, "color", detect_net_inferface, "image") else: raise ValueError('Not supported mode {}'.format(args.mode)) app.run()
and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited. ''' from engine.pyalice import Application, Node if __name__ == '__main__': app = Application(name="svo_realsense", modules=[ 'perception:stereo_visual_odometry', 'realsense', 'utils', "viewers", ]) camera = app.add('camera').add(app.registry.isaac.RealsenseCamera) camera.config.align_to_color = False camera.config.auto_exposure_priority = False camera.config.enable_color = False camera.config.cols = 640 camera.config.rows = 360 camera.config.enable_depth = False camera.config.enable_depth_laser = False camera.config.enable_ir_stereo = True camera.config.ir_framerate = 30 splitter_left = app.add('camera_splitter_left').add( app.registry.isaac.utils.ColorCameraProtoSplitter) splitter_left.config.only_pinhole = False splitter_right = app.add('camera_splitter_right').add(
default=3.0, help='The framerate at which to record') parser.add_argument('--rows', dest='rows', type=int, default=720, help='The vertical resolution of the camera images') parser.add_argument('--cols', dest='cols', type=int, default=1280, help='The horizontal resolution of the camera images') args, _ = parser.parse_known_args() app = Application(name="record_dummy", modules=["message_generators"]) # Create recorder node recorder = app.add("recorder").add(app.registry.isaac.alice.Recorder) recorder.config.base_directory = args.base_directory # Create dummy camera codelet camera = app.add("cam").add( app.registry.isaac.message_generators.CameraGenerator) camera.config.rows = args.rows camera.config.cols = args.cols camera.config.tick_period = str(args.fps) + "Hz" app.connect(camera, "color_left", recorder, "color") app.connect(camera, "depth", recorder, "depth") app.run()
app.load("packages/planner/apps/multi_joint_lqr_control.subgraph.json", prefix="lqr") # load multi joint lqr control subgraph lqr_interface = app.nodes["lqr.subgraph"]["interface"] kinematic_tree = app.nodes["lqr.kinematic_tree"]["KinematicTree"] lqr_planner = app.nodes["lqr.local_plan"]["MultiJointLqrPlanner"] app.connect(behavior_interface, "joint_target", lqr_interface, "joint_target") kinematic_tree.config.kinematic_file = kinematic_file lqr_planner.config.speed_min = [-1.0] * len(joints) lqr_planner.config.speed_max = [1.0] * len(joints) lqr_planner.config.acceleration_min = [-1.0] * len(joints) lqr_planner.config.acceleration_max = [1.0] * len(joints) # load hardware subgraph app.load_module("universal_robots") arm = app.add("hardware").add(app.registry.isaac.universal_robots.UniversalRobots) arm.config.robot_ip = "10.32.221.190" arm.config.control_mode = "joint position" arm.config.tick_period = '125Hz' arm.config.kinematic_tree = "lqr.kinematic_tree" arm.config.tool_digital_out_names = ["valve", "pump"] arm.config.tool_digital_in_names = ["unknown", "gripper"] app.connect(arm, "arm_state", lqr_interface, "joint_state") app.connect(arm, "arm_state", behavior_interface, "joint_state") app.connect(arm, "io_state", behavior_interface, "io_state") app.connect(lqr_interface, "joint_command", arm, "arm_command") app.connect(behavior_interface, "io_command", arm, "io_command") # visualize IO in sight widget_io = app.add("sight_widgets").add(app.registry.isaac.sight.SightWidget, "IO")
use_perception = True app.load( "packages/object_pose_estimation/apps/pose_cnn_decoder" \ "/detection_pose_estimation_cnn_inference.subgraph.json", prefix="detection_pose_estimation") perception_interface = app.nodes[ "detection_pose_estimation.interface"]["Subgraph"] app.load( "apps/samples/manipulation/shuffle_box_detection_pose_estimation.config.json" ) # load sim tsubgraph for tcp connection. app.load("packages/navsim/apps/navsim_tcp.subgraph.json", "simulation") sim_in = app.nodes["simulation.interface"]["input"] sim_out = app.nodes["simulation.interface"]["output"] app.connect(sim_out, "joint_state", lqr_interface, "joint_state") app.connect(sim_out, "joint_state", behavior_interface, "joint_state") app.connect(sim_out, "io_state", behavior_interface, "io_state") app.connect(lqr_interface, "joint_command", sim_in, "joint_position") app.connect(behavior_interface, "io_command", sim_in, "io_command") if use_perception: app.connect(sim_out, "color", perception_interface, "color") viewers = app.add("viewers") depth_viewer = viewers.add(app.registry.isaac.viewers.DepthCameraViewer, "DepthViewer") app.connect(sim_out, "depth", depth_viewer, "depth_listener") depth_viewer.config.max_visualization_depth = 3 # run app app.run()
choices=['720p', '640x480'], default='720p', help='The resolution of the camera images') args, _ = parser.parse_known_args() app = Application(name="record_realsense", modules=["realsense"]) if args.mode == '720p': rows = 720 cols = 1280 elif args.mode == '640x480': rows = 640 cols = 480 else: raise ValueError('Not supported camera resolution') # Create recorder node recorder = app.add("recorder").add(app.registry.isaac.alice.Recorder) recorder.config.base_directory = args.base_directory # Create realsense camera codelet camera = app.add("cam").add(app.registry.isaac.RealsenseCamera) camera.config.rows = rows camera.config.cols = cols camera.config.color_framerate = args.fps camera.config.depth_framerate = args.fps app.connect(camera, "color", recorder, "color") app.connect(camera, "depth", recorder, "depth") app.run()
type=int, default=60, help='Camera framerate') parser.add_argument( '--device_id', dest='device_id', action='store', type=int, help='Camera device id') args = parser.parse_args() # Create april_tag_python application app = Application( name="april_tags_python", modules=[ "//packages/perception:april_tags", "realsense", "sensors:v4l2_camera", "viewers", "zed" ]) # Setup camera node camera = None if args.camera == "zed": camera = app.add('input_images').add(app.registry.isaac.ZedCamera) camera.config.resolution = args.resolution camera.config.tick_period = '{tick_period}Hz'.format(tick_period=args.framerate) camera_out_channel = "left_camera_rgb" elif args.camera == "realsense": camera = app.add('input_images').add(app.registry.isaac.RealsenseCamera) camera.config.cols, camera.config.rows = tuple( [int(arg) for arg in args.resolution.split('x')]) camera.config.color_framerate = args.framerate camera_out_channel = "color" elif args.camera == "v4l2": camera = app.add('input_images').add(app.registry.isaac.V4L2Camera) if args.device_id == None: raise ValueError('Could not set None. Please provide device id') camera.config.device_id = args.device_id camera.config.cols, camera.config.rows = tuple(
from engine.pyalice import Application app = Application(name = "mybot") app.load_module('message_generators') app.load_module('viewers') app.load('packages/navsim/apps/navsim_tcp.subgraph.json', 'simulation') node_view = app.add("viewer") component_view = node_view.add(app.registry.isaac.viewers.ColorCameraViewer, 'ColorCameraViewer') node_view = app.add("depth_viewer") node_view.add(app.registry.isaac.viewers.DepthCameraViewer, 'DepthCameraViewer') app.connect('simulation.interface/output', 'color', 'viewer/ColorCameraViewer', 'color_listener') app.connect('simulation.interface/output', 'depth', 'depth_viewer/DepthCameraViewer', 'depth_listener') app.run()