def get_datasets(config, sel=None): # Set up boolean arrays for querys all_tags = set() for dataset in config.datasets: all_tags |= dataset.tags flags = { flag: np.array([flag in dataset.tags for dataset in config.datasets], bool) for flag in all_tags } # Extract the relevant datasets datasets = config.datasets if sel is not None: sel = "&".join(["(" + w + ")" for w in utils.split_outside(sel, ",")]) selinds = np.where(eval(sel, flags))[0] datasets = [datasets[i] for i in selinds] # Make all paths relative to us instead of the config file cdir = os.path.dirname(config.path) # In tiled input format, all input maps have the same geometry for dataset in datasets: for split in dataset.splits: split.map = os.path.join(cdir, split.map) split.div = os.path.join(cdir, split.div) # Read the geometry from all the datasets. Also make paths relative to us instead # of the config file for dataset in datasets: shape, wcs = read_geometry(dataset.splits[0].map) dataset.shape = shape dataset.wcs = wcs dataset.beam = setup_beam(dataset.beam_params) return datasets
def parse_desc(desc, default={}): res = default.copy() # Parse normally now that the : are out of the way for tok in utils.split_outside(desc, ",", "[({", "])}"): subtoks = tok.split("=") if len(subtoks) == 1: res["value"] = subtoks[0] else: key, val = subtoks res[key] = val return res
def query(self, query=None, apply_default_query=True): """Query the database. The query takes the form tag,tag,tag,...:sort[slice], where all tags must be satisfied for an id to be returned. More general syntax is also available. For example, (a+b>c)|foo&bar,cow. This follows standard python and numpy syntax, except that , is treated as a lower-priority version of &.""" # Make a copy of self.data so we can't modify it without changing ourself data = self.data.copy() # First split off any sorting field or slice if query is None: query = "" toks = utils.split_outside(query, ":") query, rest = toks[0], ":".join(toks[1:]) # Hack: Support id fields as tags, even if they contain # illegal characters.. t1 = time.time() for id in data["id"]: if id not in query: continue query = re.sub(r"""(?<!['"])\b%s\b""" % id, "(id=='%s')" % id, query) # Split into ,-separated fields. Fields starting with a "+" # are taken to be tag markers, and are simply propagated to the # resulting ids. toks = utils.split_outside(query, ",") fields, subid = [], [] override_ids = None for tok in toks: if len(tok) == 0: continue if tok.startswith("+"): # Tags starting with + will be interpreted as a subid specification subid.append(tok[1:]) elif tok.startswith("/"): # Tags starting with / will be interpreted as special query flags if tok == "/all": apply_default_query = False else: raise ValueError("Unknown query flag '%s'" % tok) else: # Normal field. Perform a few convenience transformations first. if tok.startswith("@@"): # Hack. *Force* the given ids to be returned, even if they aren't in the database. override_ids = load_ids(tok[2:]) continue elif tok.startswith("@"): # Restrict dataset to those in the given file tok = "file_contains('%s',id)" % tok[1:] elif tok.startswith("~@"): tok = "~file_contains('%s',id)" % tok[2:] fields.append(tok) if override_ids is not None: # Append subids to our ids, and return immediately. All other fields # and queries are ignored. subs = np.array(",".join(subid)) subs = np.full(len(override_ids), subs, subs.dtype) return append_subs(override_ids, subs) # Apply our default queries here. These are things that we almost always # want in our queries, and that it's tedious to have to specify manually # each time. For example, this would be "selected" for act todinfo queries if apply_default_query: fields = fields + utils.split_outside(self.default_query, ",") subid = ",".join(subid) # Now evaluate our fields one by one. This is done so that # function fields can inspect the current state at that point for field in fields: scope = np.__dict__.copy() scope.update(data) for name, functor in self.functors.iteritems(): scope[name] = functor(data) with utils.nowarn(): hits = eval(field, scope) # Restrict all fields to the result data = dslice(data, hits) # Split the rest into a sorting field and a slice toks = rest.split("[") if len(toks) == 1: sort, fsel, dsel = toks[0], "", "" elif len(toks) == 2: sort, fsel, dsel = toks[0], "", "[" + toks[1] else: sort, fsel, dsel = toks[0], "[" + toks[1], "[" + "[".join(toks[2:]) if self.sort and not sort: sort = self.sort if sort: # Evaluate sorting field field = data[sort] field = eval("field" + fsel) data = dslice(data, np.argsort(field)) # Finally apply the data slice inds = np.arange(len(data["id"])) inds = eval("inds" + dsel) data = dslice(data, inds) # Build our subid extensions and append them to ids subs = np.array([merge_subid(subid, sub) for sub in data["subids"]]) ids = append_subs(data["id"], subs) return ids
def autocut(d, turnaround=None, ground=None, sun=None, moon=None, max_frac=None, pickup=None): """Apply automatic cuts to calibrated data.""" if not config.get("autocut"): return d ndet, nsamp = d.ndet, d.nsamp if not ndet or not nsamp: return d # Insert a cut into d if necessary if "cut" not in d: d += dataset.DataField("cut", sampcut.empty(ndet,nsamp)) # insert an autocut datafield, to keep track of how much data each # automatic cut cost us d += dataset.DataField("autocut", []) def addcut(label, dcut, targets="c"): # det ndet part here allows for broadcasting of cuts from 1-det to full-det dn = dcut.sum()*d.ndet/dcut.ndet if dcut is not None else 0 if dn == 0: d.autocut.append([label,0,0]) else: n0, dn = d.cut.sum(), dcut.sum() dn = dn*d.cut.ndet/dcut.ndet if "c" in targets: d.cut *= dcut if "n" in targets: d.cut_noiseest *= dcut if "b" in targets: d.cut_basic *= dcut d.autocut.append([ label, dn, d.cut.sum() - n0 ]) # name, mycut, myeffect if config.get("cut_tconst") and "tau" in d: addcut("tconst", cuts.tconst_cut(nsamp, d.tau, config.get("cut_tconst"))) if config.get("cut_stationary") and "boresight" in d: addcut("stationary", cuts.stationary_cut(d.boresight[1])) if config.get("cut_tod_ends") and "srate" in d: addcut("tod_ends", cuts.tod_end_cut(nsamp, d.srate)) if config.get("cut_turnaround", turnaround) and "boresight" in d: addcut("turnaround",cuts.turnaround_cut(d.boresight[1])) if config.get("cut_ground", ground) and "boresight" in d and "point_offset" in d: addcut("ground", cuts.ground_cut(d.boresight, d.point_offset)) if config.get("cut_sun", sun) and "boresight" in d and "point_offset" in d and "site" in d: addcut("avoidance",cuts.avoidance_cut(d.boresight, d.point_offset, d.site, "Sun", config.get("cut_sun_dist")*np.pi/180)) if config.get("cut_moon", moon) and "boresight" in d and "point_offset" in d and "site" in d: addcut("moon",cuts.avoidance_cut(d.boresight, d.point_offset, d.site, "Moon", config.get("cut_moon_dist")*np.pi/180)) if config.get("cut_pickup", pickup) and "boresight" in d and "pickup_cut" in d: addcut("pickup",cuts.pickup_cut(d.boresight[1], d.dets, d.pickup_cut)) if config.get("cut_mostly_cut"): addcut("mostly_cut", cuts.cut_mostly_cut_detectors(d.cut_quality)) if config.get("cut_obj"): objs = utils.split_outside(config.get("cut_obj"),",") for obj in objs: toks = obj.split(":") objname = toks[0] if objname.startswith("["): objname = [float(w)*utils.degree for w in objname[1:-1].split(",")] dist = 0.2*utils.degree if len(toks) > 1: dist = float(toks[1])*utils.degree # Hack: only cut for noise estimation purposes if dist is negative targets = "cnb" if dist > 0 else "n" addcut(obj, cuts.avoidance_cut(d.boresight, d.point_offset, d.site, objname, dist), targets=targets) if config.get("cut_srcs"): cpar = [tok.split(":") for tok in config.get("cut_srcs").split(",")] names, lims = [], [] for par in cpar: if par[0] in ["map","nmat"]: names.append(par[0]) lims.append(float(par[1])) if any(lims): params = pointsrcs.src2param(d.pointsrcs) params[:,5:7] = 1 params[:,7] = 0 # Only bother with sources that are actually strong enough maxlim = max(lims+[0]) params = params[params[:,2]>maxlim] cutlist = cuts.point_source_cut(d, params, lims) for name, c in zip(names, cutlist): if name == "map": addcut("point_srcs_m", c, "c") elif name == "nmat": addcut("point_srcs_n", c, "n") if config.get("cut_extra_srcs"): srclist = np.loadtxt(config.get("cut_extra_srcs"), usecols=(0,1), ndmin=2) srclim = float(config.get("cut_extra_lim")) params = np.zeros([len(srclist),8]) params[:,:2] = srclist[:,1::-1]*utils.degree params[:,2] = 1 params[:,5:7] = 1 c = cuts.point_source_cut(d, params, srclim) addcut("point_srcs", c, "nbc") # What fraction is cut? cut_fraction = float(d.cut.sum())/d.cut.size # Get rid of completely cut detectors keep = np.where(d.cut.sum(axis=1) < nsamp)[0] d.restrict(d.dets[keep]) ndet, nsamp = d.ndet, d.nsamp def cut_all_if(label, condition): if condition: dcut = sampcut.full(d.ndet, nsamp) else: dcut = None addcut(label, dcut) cut_all_if("max_frac", config.get("cut_max_frac", max_frac) < cut_fraction) if "srate" in d: cut_all_if("tod_mindur", config.get("cut_tod_mindur") > nsamp/d.srate/60) cut_all_if("tod_mindet", config.get("cut_tod_mindet") > ndet) # Get rid of completely cut detectors again keep = np.where(d.cut.sum(axis=1) < nsamp)[0] d.restrict(dets=d.dets[keep]) return d
parser.add_argument("-a", "--apod-val", type=float, default=2e-1) parser.add_argument("-A", "--apod-alpha", type=float, default=5) parser.add_argument("-E", "--apod-edge", type=float, default=120) parser.add_argument("--kxrad", type=float, default=20) parser.add_argument("--kx-ymax-scale", type=float, default=1) parser.add_argument("--highpass", type=float, default=200) parser.add_argument("--cg-tol", type=float, default=1e-6) parser.add_argument("--max-ps", type=float, default=0) parser.add_argument("-F", "--filter", action="store_true") parser.add_argument("-c", "--cont", action="store_true") parser.add_argument("-v", "--verbose", action="store_true") args = parser.parse_args() enmap.extent_model.append("intermediate") sel = "&".join(["(" + w + ")" for w in utils.split_outside(args.sel, ",")]) dtype = np.float32 comm = mpi.COMM_WORLD utils.mkdir(args.odir) # Set up configuration config = imp.load_source("config", args.config) # Set up boolean arrays for querys all_tags = set() for dataset in config.datasets: all_tags |= dataset.tags flags = { flag: np.array([flag in dataset.tags for dataset in config.datasets], bool) for flag in all_tags }