Esempio n. 1
0
    def test_correct_values(self) -> None:
        for rho in [0.0, 0.01, 0.2, 0.8]:
            with self.subTest(rho=rho):
                # MI for two correlated unit variance Gaussians
                mi = -0.5 * np.log(1 - rho**2)

                self.assertAlmostEqual(normalize_mi(mi), rho, delta=0.001)
Esempio n. 2
0
    def test_list_is_handled_elementwise(self) -> None:
        mi = [-1, 0, 1]
        cor = normalize_mi(mi)

        self.assertEqual(cor.shape, (3, ))  # type: ignore
        self.assertAlmostEqual(cor[0], -1.0, delta=0.001)
        self.assertAlmostEqual(cor[1], 0.0, delta=0.001)
        self.assertAlmostEqual(cor[2], 0.93, delta=0.03)
Esempio n. 3
0
    def test_pandas_structure_is_preserved(self) -> None:
        mi = np.asarray([[0.1, 0.5], [0, -1]])
        mi = pd.DataFrame(mi, columns=["A", "B"], index=[14, 52])

        cor = normalize_mi(mi)  # type: pd.DataFrame
        self.assertAlmostEqual(cor.loc[14, "A"], 0.4, delta=0.05)
        self.assertAlmostEqual(cor.loc[14, "B"], 0.8, delta=0.05)
        self.assertAlmostEqual(cor.loc[52, "A"], 0.0, delta=0.001)
        self.assertAlmostEqual(cor.loc[52, "B"], -1.0, delta=0.001)
Esempio n. 4
0
    def test_array_is_handled_elementwise(self) -> None:
        mi = np.asarray([[0.1, 0.5], [0, -1]])
        cor = normalize_mi(mi)

        self.assertEqual(cor.shape, (2, 2))
        # Large deltas because I looked these up manually - the order is what matters
        self.assertAlmostEqual(cor[0, 0], 0.4, delta=0.05)
        self.assertAlmostEqual(cor[0, 1], 0.8, delta=0.05)
        self.assertAlmostEqual(cor[1, 0], 0.0, delta=0.001)
        self.assertAlmostEqual(cor[1, 1], -1.0, delta=0.001)
Esempio n. 5
0
 def test_negative_values_are_passed_as_is(self) -> None:
     for value in [-0.01, -0.1, -1, -np.inf]:
         with self.subTest(value=value):
             self.assertAlmostEqual(normalize_mi(value), value, delta=0.001)