def main(args, thread_num=0): print(thread_num) # settings alfred_dataset_path = '../data/json_2.1.0/train' constants.DATA_SAVE_PATH = args.save_path print("Force Unsave Data: %s" % str(args.force_unsave)) # Set up data structure to track dataset balance and use for selecting next parameters. # In actively gathering data, we will try to maximize entropy for each (e.g., uniform spread of goals, # uniform spread over patient objects, uniform recipient objects, and uniform scenes). succ_traj = pd.DataFrame( columns=["goal", "pickup", "movable", "receptacle", "scene"]) # objects-to-scene and scene-to-objects database for scene_type, ids in constants.SCENE_TYPE.items(): for id in ids: obj_json_file = os.path.join('layouts', 'FloorPlan%d-objects.json' % id) with open(obj_json_file, 'r') as of: scene_objs = json.load(of) id_str = str(id) scene_id_to_objs[id_str] = scene_objs for obj in scene_objs: if obj not in obj_to_scene_ids: obj_to_scene_ids[obj] = set() obj_to_scene_ids[obj].add(id_str) # scene-goal database for g in constants.GOALS: for st in constants.GOALS_VALID[g]: scenes_for_goal[g].extend( [str(s) for s in constants.SCENE_TYPE[st]]) scenes_for_goal[g] = set(scenes_for_goal[g]) # scene-type database for st in constants.SCENE_TYPE: for s in constants.SCENE_TYPE[st]: scene_to_type[str(s)] = st # pre-populate counts in this structure using saved trajectories path. succ_traj, full_traj = load_successes_from_disk(args.save_path, succ_traj, args.just_examine, args.repeats_per_cond) if args.just_examine: print_successes(succ_traj) return print(succ_traj.groupby('goal').count()) # pre-populate failed trajectories. fail_traj = load_fails_from_disk(args.save_path) print("Loaded %d known failed tuples" % len(fail_traj)) # create env and agent env = ThorEnv(x_display='0.%d' % (thread_num % 2)) game_state = TaskGameStateFullKnowledge(env) agent = DeterministicPlannerAgent(thread_id=0, game_state=game_state) errors = { } # map from error strings to counts, to be shown after every failure. goal_candidates = constants.GOALS[:] pickup_candidates = list(set().union(*[ constants.VAL_RECEPTACLE_OBJECTS[ obj] # Union objects that can be placed. for obj in constants.VAL_RECEPTACLE_OBJECTS ])) pickup_candidates = [ p for p in pickup_candidates if constants.OBJ_PARENTS[p] in obj_to_scene_ids ] movable_candidates = list( set(constants.MOVABLE_RECEPTACLES).intersection( obj_to_scene_ids.keys())) receptacle_candidates = [obj for obj in constants.VAL_RECEPTACLE_OBJECTS if obj not in constants.MOVABLE_RECEPTACLES and obj in obj_to_scene_ids] + \ [obj for obj in constants.VAL_ACTION_OBJECTS["Toggleable"] if obj in obj_to_scene_ids] # toaster isn't interesting in terms of producing linguistic diversity receptacle_candidates.remove('Toaster') receptacle_candidates.sort() scene_candidates = list(scene_id_to_objs.keys()) n_until_load_successes = args.async_load_every_n_samples print_successes(succ_traj) task_sampler = sample_task_params(succ_traj, full_traj, fail_traj, goal_candidates, pickup_candidates, movable_candidates, receptacle_candidates, scene_candidates) # main generation loop # keeps trying out new task tuples as trajectories either fail or suceed while True: # for _ in range(20): for ii, json_path in enumerate( glob.iglob(os.path.join(alfred_dataset_path, "**", "traj_data.json"), recursive=True)): # if ii % args.num_threads == thread_num: # if ii == 5: sampled_task = json_path.split('/')[-3].split('-') # sampled_task = next(task_sampler) # print("===============") # print(ii, json_path) print(sampled_task) # DEBUG # print("===============") if sampled_task is None: sys.exit( "No valid tuples left to sample (all are known to fail or already have %d trajectories" % args.repeats_per_cond) gtype, pickup_obj, movable_obj, receptacle_obj, sampled_scene = sampled_task sampled_scene = int(sampled_scene) print("sampled tuple: " + str((gtype, pickup_obj, movable_obj, receptacle_obj, sampled_scene))) tries_remaining = args.trials_before_fail # only try to get the number of trajectories left to make this tuple full. target_remaining = args.repeats_per_cond - len( succ_traj.loc[(succ_traj['goal'] == gtype) & (succ_traj['pickup'] == pickup_obj) & (succ_traj['movable'] == movable_obj) & (succ_traj['receptacle'] == receptacle_obj) & (succ_traj['scene'] == str(sampled_scene))]) num_place_fails = 0 # count of errors related to placement failure for no valid positions. # continue until we're (out of tries + have never succeeded) or (have gathered the target number of instances) while num_place_fails > args.trials_before_fail or target_remaining > 0: # environment setup constants.pddl_goal_type = gtype print("PDDLGoalType: " + constants.pddl_goal_type) task_id = create_dirs(gtype, pickup_obj, movable_obj, receptacle_obj, sampled_scene) # setup data dictionary setup_data_dict() constants.data_dict['task_id'] = task_id constants.data_dict['task_type'] = constants.pddl_goal_type constants.data_dict['dataset_params'][ 'video_frame_rate'] = constants.VIDEO_FRAME_RATE # plan & execute try: # if True: # Agent reset to new scene. constraint_objs = { 'repeat': [( constants.OBJ_PARENTS[ pickup_obj], # Generate multiple parent objs. np.random.randint( 2 if gtype == "pick_two_obj_and_place" else 1, constants.PICKUP_REPEAT_MAX + 1))], 'sparse': [(receptacle_obj.replace('Basin', ''), num_place_fails * constants.RECEPTACLE_SPARSE_POINTS) ] } if movable_obj != "None": constraint_objs['repeat'].append( (movable_obj, np.random.randint(1, constants.PICKUP_REPEAT_MAX + 1))) for obj_type in scene_id_to_objs[str(sampled_scene)]: if (obj_type in pickup_candidates and obj_type != constants.OBJ_PARENTS[pickup_obj] and obj_type != movable_obj): constraint_objs['repeat'].append( (obj_type, np.random.randint( 1, constants.MAX_NUM_OF_OBJ_INSTANCES + 1))) if gtype in goal_to_invalid_receptacle: constraint_objs['empty'] = [ (r.replace('Basin', ''), num_place_fails * constants.RECEPTACLE_EMPTY_POINTS) for r in goal_to_invalid_receptacle[gtype] ] constraint_objs['seton'] = [] if gtype == 'look_at_obj_in_light': constraint_objs['seton'].append( (receptacle_obj, False)) if num_place_fails > 0: print( "Failed %d placements in the past; increased free point constraints: " % num_place_fails + str(constraint_objs)) scene_info = { 'scene_num': sampled_scene, 'random_seed': random.randint(0, 2**32) } info = agent.reset(scene=scene_info, objs=constraint_objs) # Problem initialization with given constraints. task_objs = {'pickup': pickup_obj} if movable_obj != "None": task_objs['mrecep'] = movable_obj if gtype == "look_at_obj_in_light": task_objs['toggle'] = receptacle_obj else: task_objs['receptacle'] = receptacle_obj agent.setup_problem({'info': info}, scene=scene_info, objs=task_objs) # Now that objects are in their initial places, record them. object_poses = [{ 'objectName': obj['name'].split('(Clone)')[0], 'position': obj['position'], 'rotation': obj['rotation'] } for obj in env.last_event.metadata['objects'] if obj['pickupable']] dirty_and_empty = gtype == 'pick_clean_then_place_in_recep' object_toggles = [{ 'objectType': o, 'stateChange': 'toggleable', 'isToggled': v } for o, v in constraint_objs['seton']] constants.data_dict['scene']['object_poses'] = object_poses constants.data_dict['scene'][ 'dirty_and_empty'] = dirty_and_empty constants.data_dict['scene'][ 'object_toggles'] = object_toggles # Pre-restore the scene to cause objects to "jitter" like they will when the episode is replayed # based on stored object and toggle info. This should put objects closer to the final positions they'll # be inlay at inference time (e.g., mugs fallen and broken, knives fallen over, etc.). print("Performing reset via thor_env API") env.reset(sampled_scene) print("Performing restore via thor_env API") env.restore_scene(object_poses, object_toggles, dirty_and_empty) event = env.step( dict(constants.data_dict['scene']['init_action'])) terminal = False while not terminal and agent.current_frame_count <= constants.MAX_EPISODE_LENGTH: action_dict = agent.get_action(None) agent.step(action_dict) reward, terminal = agent.get_reward() dump_data_dict() save_video() # else: except Exception as e: import traceback traceback.print_exc() print("Error: " + repr(e)) print("Invalid Task: skipping...") if args.debug: print(traceback.format_exc()) deleted = delete_save(args.in_parallel) if not deleted: # another thread is filling this task successfully, so leave it alone. target_remaining = 0 # stop trying to do this task. else: if str( e ) == "API Action Failed: No valid positions to place object found": # Try increasing the space available on sparse and empty flagged objects. num_place_fails += 1 tries_remaining -= 1 else: # generic error tries_remaining -= 1 estr = str(e) if len(estr) > 120: estr = estr[:120] if estr not in errors: errors[estr] = 0 errors[estr] += 1 print("%%%%%%%%%%") es = sum([errors[er] for er in errors]) print("\terrors (%d):" % es) for er, v in sorted(errors.items(), key=lambda kv: kv[1], reverse=True): if v / es < 0.01: # stop showing below 1% of errors. break print("\t(%.2f) (%d)\t%s" % (v / es, v, er)) print("%%%%%%%%%%") continue if args.force_unsave: delete_save(args.in_parallel) # add to save structure. succ_traj = succ_traj.append( { "goal": gtype, "movable": movable_obj, "pickup": pickup_obj, "receptacle": receptacle_obj, "scene": str(sampled_scene) }, ignore_index=True) target_remaining -= 1 tries_remaining += args.trials_before_fail # on success, add more tries for future successes # if this combination resulted in a certain number of failures with no successes, flag it as not possible. if tries_remaining == 0 and target_remaining == args.repeats_per_cond: new_fails = [(gtype, pickup_obj, movable_obj, receptacle_obj, str(sampled_scene))] fail_traj = load_fails_from_disk(args.save_path, to_write=new_fails) print("%%%%%%%%%%") print("failures (%d)" % len(fail_traj)) # print("\t" + "\n\t".join([str(ft) for ft in fail_traj])) print("%%%%%%%%%%") # if this combination gave us the repeats we wanted, note it as filled. if target_remaining == 0: full_traj.add((gtype, pickup_obj, movable_obj, receptacle_obj, sampled_scene)) # if we're sharing with other processes, reload successes from disk to update local copy with others' additions. if args.in_parallel: if n_until_load_successes > 0: n_until_load_successes -= 1 else: print( "Reloading trajectories from disk because of parallel processes..." ) succ_traj = pd.DataFrame( columns=succ_traj.columns) # Drop all rows. succ_traj, full_traj = load_successes_from_disk( args.save_path, succ_traj, False, args.repeats_per_cond) print("... Loaded %d trajectories" % len(succ_traj.index)) n_until_load_successes = args.async_load_every_n_samples print_successes(succ_traj) task_sampler = sample_task_params( succ_traj, full_traj, fail_traj, goal_candidates, pickup_candidates, movable_candidates, receptacle_candidates, scene_candidates) print( "... Created fresh instance of sample_task_params generator" )
class Thor(threading.Thread): def __init__(self, queue, train_eval="train"): Thread.__init__(self) self.action_queue = queue self.mask_rcnn = None self.env = None self.train_eval = train_eval self.controller_type = "oracle" def run(self): while True: action, reset, task_file = self.action_queue.get() try: if reset: self.reset(task_file) else: self.step(action) finally: self.action_queue.task_done() def init_env(self, config): self.config = config screen_height = config['env']['thor']['screen_height'] screen_width = config['env']['thor']['screen_width'] smooth_nav = config['env']['thor']['smooth_nav'] save_frames_to_disk = config['env']['thor']['save_frames_to_disk'] if not self.env: self.env = ThorEnv(player_screen_height=screen_height, player_screen_width=screen_width, smooth_nav=smooth_nav, save_frames_to_disk=save_frames_to_disk) self.controller_type = self.config['controller']['type'] self._done = False self._res = () self._feedback = "" self.expert = HandCodedThorAgent(self.env, max_steps=200) self.prev_command = "" self.load_mask_rcnn() def load_mask_rcnn(self): # load pretrained MaskRCNN model if required if 'mrcnn' in self.config['controller'][ 'type'] and not self.mask_rcnn: model_path = os.path.join( os.environ['ALFRED_ROOT'], self.config['mask_rcnn']['pretrained_model_path']) self.mask_rcnn = load_pretrained_model(model_path) def set_task(self, task_file): self.task_file = task_file self.traj_root = os.path.dirname(task_file) with open(task_file, 'r') as f: self.traj_data = json.load(f) def reset(self, task_file): assert self.env assert self.controller_type self.set_task(task_file) # scene setup scene_num = self.traj_data['scene']['scene_num'] object_poses = self.traj_data['scene']['object_poses'] dirty_and_empty = self.traj_data['scene']['dirty_and_empty'] object_toggles = self.traj_data['scene']['object_toggles'] scene_name = 'FloorPlan%d' % scene_num self.env.reset(scene_name) self.env.restore_scene(object_poses, object_toggles, dirty_and_empty) # recording save_frames_path = self.config['env']['thor']['save_frames_path'] self.env.save_frames_path = os.path.join( save_frames_path, self.traj_root.replace('../', '')) # initialize to start position self.env.step(dict( self.traj_data['scene']['init_action'])) # print goal instr task_desc = get_templated_task_desc(self.traj_data) print("Task: %s" % task_desc) # print("Task: %s" % (self.traj_data['turk_annotations']['anns'][0]['task_desc'])) # setup task for reward class args: pass args.reward_config = os.path.join(os.environ['ALFRED_ROOT'], 'agents/config/rewards.json') self.env.set_task(self.traj_data, args, reward_type='dense') # set controller self.controller_type = self.config['controller']['type'] self.goal_desc_human_anns_prob = self.config['env'][ 'goal_desc_human_anns_prob'] load_receps = self.config['controller']['load_receps'] debug = self.config['controller']['debug'] if self.controller_type == 'oracle': self.controller = OracleAgent( self.env, self.traj_data, self.traj_root, load_receps=load_receps, debug=debug, goal_desc_human_anns_prob=self.goal_desc_human_anns_prob) elif self.controller_type == 'oracle_astar': self.controller = OracleAStarAgent( self.env, self.traj_data, self.traj_root, load_receps=load_receps, debug=debug, goal_desc_human_anns_prob=self.goal_desc_human_anns_prob) elif self.controller_type == 'mrcnn': self.controller = MaskRCNNAgent( self.env, self.traj_data, self.traj_root, pretrained_model=self.mask_rcnn, load_receps=load_receps, debug=debug, goal_desc_human_anns_prob=self.goal_desc_human_anns_prob, save_detections_to_disk=self.env.save_frames_to_disk, save_detections_path=self.env.save_frames_path) elif self.controller_type == 'mrcnn_astar': self.controller = MaskRCNNAStarAgent( self.env, self.traj_data, self.traj_root, pretrained_model=self.mask_rcnn, load_receps=load_receps, debug=debug, goal_desc_human_anns_prob=self.goal_desc_human_anns_prob, save_detections_to_disk=self.env.save_frames_to_disk, save_detections_path=self.env.save_frames_path) else: raise NotImplementedError() # zero steps self.steps = 0 # reset expert state self.expert.reset(task_file) self.prev_command = "" # return intro text self._feedback = self.controller.feedback self._res = self.get_info() return self._feedback def step(self, action): if not self._done: # take action self.prev_command = str(action) self._feedback = self.controller.step(action) self._res = self.get_info() if self.env.save_frames_to_disk: self.record_action(action) self.steps += 1 def get_results(self): return self._res def record_action(self, action): txt_file = os.path.join(self.env.save_frames_path, 'action.txt') with open(txt_file, 'a+') as f: f.write("%s\r\n" % str(action)) def get_info(self): won = self.env.get_goal_satisfied() pcs = self.env.get_goal_conditions_met() goal_condition_success_rate = pcs[0] / float(pcs[1]) acs = self.controller.get_admissible_commands() # expert action if self.train_eval == "train": game_state = { 'admissible_commands': acs, 'feedback': self._feedback, 'won': won } expert_actions = ["look"] try: if not self.prev_command: self.expert.observe(game_state['feedback']) else: next_action = self.expert.act(game_state, 0, won, self.prev_command) if next_action in acs: expert_actions = [next_action] except HandCodedAgentTimeout: print("Expert Timeout") except Exception as e: print(e) traceback.print_exc() else: expert_actions = [] training_method = self.config["general"]["training_method"] if training_method == "dqn": max_nb_steps_per_episode = self.config["rl"]["training"][ "max_nb_steps_per_episode"] elif training_method == "dagger": max_nb_steps_per_episode = self.config["dagger"]["training"][ "max_nb_steps_per_episode"] else: raise NotImplementedError self._done = won or self.steps > max_nb_steps_per_episode return (self._feedback, self._done, acs, won, goal_condition_success_rate, expert_actions) def get_last_frame(self): return self.env.last_event.frame[:, :, ::-1] def get_exploration_frames(self): return self.controller.get_exploration_frames()